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ABSTRACT

The convex /;-regularized logdet divergence criterion has been
shown to produce theoretically consistent graph learning. However,
this objective function is challenging since the ¢;-regularization is
nonsmooth, the log det objective is not globally Lipschitz gradient
function, and the problem is high-dimensional. Using the self-
concordant property of the objective, we propose a new adaptive
step size selection and present the (F)PS ((F)ast Proximal algo-
rithms for Self-concordant functions) algorithmic framework which
has linear convergence and exhibits superior empirical results as
compared to state-of-the-art first order methods.

Index Terms— Sparse inverse covariance estimation, self-
concordance, step size selection

1. INTRODUCTION

Problem setup: Let X = {X;, X5,..., X,,} be a set of variables
with joint Gaussian distribution f(X1, Xo,..., Xn) ~ N(u, )
where p € R™ is assumed known and X € R " 3 > 0 de-
notes the unknown covariance matrix. In this setting, assume we
only have access to the underlying model through a set of inde-
pendent and identically distributed (iid) samples {x;}"_, such that
xj ~ N(p,X), Vj. Given {x;}_,, we are interested in infer-
ring any conditional dependencies among X' by estimating X 1.
A non-robust estimate of 37! is through the sample covariance
g 230 (x; — ) (x; — )" where i = £ 3P, x;. Unfortu-
nately, in many cases, we cannot afford to acquire adequate samples
for accurate ™! estimation via f]; for p « n, 3 is rank-deficient
and the use of sophisticated estimation procedures is imperative.

Graphical models interpretation: In undirected graphical models,
each variable X; corresponds to a node in a Gaussian Markov ran-
dom field (GMRF). Moreover, let E = {(4,5) : X; £ X; | X
is observed Vk # 14,5} be the set of edges in the graph. Under this
setting, we desire to infer the graph structure given a set of observa-
tions. Due to the Gaussianity assumption, Ei_jl =0< (i,j) ¢ E.

Optimization criteria: [1] shows that the maximum likelihood es-
timation (£%*)™! = argmaxg_1., [T5_, f(x;) is equivalent to:

®* = argmin { —log det(®) + tr((-)f])}, 1)
>0

where ©®* = (X*)~!. Based on (1), developments in random ma-

trix theory [2] divulge the poor performance of @* without regu-

larization: the solution to (1) is usually fully dense and no inference
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about the graph structure is possible. Moreover, when p < n, the ab-
sence of a regularization term leads to non-robust estimates of 3.

In practice though, parsimonious solutions that adequately ex-
plain the data, increase the interpretability of the results even if they
lead to worse-valued loss objective values. Using ¢;-norm to regu-
larize the objective, (1) can be well-approximated by:

e0Ff = argf(l)in {F(©):= f(®) +g(®)}, 2

where f(©) := —log det(®) +tr(f]®) and g(®) := pllvec(®)]1
with p > 0 that defines the sparsity of the graph selection.

Challenges: Within this context, the main challenges in (2) are:

e High-dimensional problems have become the norm in data analy-
sis; thus, time- and memory-efficient schemes are crucial.

e Apart from its computational challenge, (2) is a non-trivial convex
problem: f(©) is a strictly convex but not globally Lipschitz-
continuous gradient function; moreover, g(®) is a nonsmooth
regularizer. Even in simple gradient descent schemes, Lipschitz-
based optimal step size calculation becomes infeasible and heuris-
tics lead to slowly convergent, state-of-the-art algorithms [3].
Moreover, (2) is constrained over the set of positive-definite ma-
trices and the choice of regularization parameter p is crucial [4].

Prior work: Being a special case of semidefinite programming, (2)
can be solved using off-the-shelf interior point approaches [5, 6].
Though, the resulting per iteration complexity for existing interior
point methods is O (n®) [7]. This has led to the development of mul-
tifarious works, which can be roughly categorized into five camps:
(%) first-order gradient methods [7, 8, 9], (i) second order (Newton-
based) gradient methods [10, 11], (¢4¢) interior point-based schemes
[12], (iv) Lagrangian [13, 3] and (i4¢) greedy approaches [14].

While many of the first-order approaches are slowly convergent
and require numerous parameters to be set apriori (reducing their
universality), recent developments on second-order methods have re-
sulted in very fast solvers. Though, to achieve this fast performance,
these approaches “sacrifice” their universality for faster implemen-
tation: one can envision complicated examples (e.g., non-modular
regularization) where second-order approaches fail to use their “ar-
senal” (e.g., greedy heuristics) for computational superiority.

Contributions: Our contributions can be summarized as follows:

e We introduce a new adaptive step size for first-order methods to
solve (2), based on the self-concordance property. This technique
can be incorporated in mane other minimization problems with
the same property. Moreover, this tool can be subsumed in many
existing schemes [3] with a wide range of diverse regularization
terms, decreasing their time-complexity.
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e To illustrate the substance of the step size selection, we pro-
pose the (F)PS ((F)ast Proximal algorithms for Self-concordant
functions) framework and show its computational- and memory-
efficiency. The resulting schemes have fast convergence and
require the minimum number of input parameters.

2. PRELIMINARIES

Notation: We reserve lower-case and bold lower-case letters for
scalar and vector representation, respectively. Upper-case letters de-
note matrices. The inner product between matrices A, B € R™*"™ is
denoted as tr( A" B), where tr(-) is the trace operator. Given a ma-
trix A € R™*"™, we reserve diag (A) € R™*™ to denote the diagonal
matrix with entries taken from the diagonal of A.

We reserve R . to denote the set of positive scalars. Let STy
denote the set of posifive definite n x n matrices. For p(X) : ST, —
R, the gradient is denoted as Vp(X); for h(z) : R — R, we use
K (x), " (z), h"” (x) to denote the first, second and, third derivative.

Definition 1 (Bregman divergence). Let p : S, — R u {+w0}
be a continuously differentiable and strictly convex function. Given
©1,0, € R™*", the Bregman divergence Dy (- || -) is given by:

Dp(©1 || ©2) = p(©1) — p(O2) — r(Vp(©2)(O1 — O3)).

Definition 2 (Convexity bounds in gradient methods). Let p
St — R be a strongly convex function with continuous Lipschitz
gradient Vp(X) for X € S .. Then, there exist p, L > 0 such

that, for any ©1,02 € S | : § < %2?71@‘:@”%) <L

Proposition 1 (Step size selection for strongly convex gradient de-
scent schemes). For strongly convex (unconstrained) minimization
problems minx ¢(X) where ¢ : R™*" — R, 7* := 2/(u + L)
is the optimal step size in the gradient descent scheme X,;11 =

Definition 3 (Second order expansion of a function). [16] Let h :
R — R be a twice differentiable over an open sphere S. Then, for
x,y € S, there exists an constant « € [0, 1] such that:

/ 1 "
h(z +y) =h(z)+h'(z) y+ §y2~h (r + ay). 3)
Definition 4 (Self-concordant functions). [17] A convex function h :

R — R is self-concordant if |h" (x)| < 2h" (2)*?, Yz € R. Given
two self-concordant functions hi, ha, h1 + ha is self-concordant.

Lemma 1 (Upper and lower bounds on second derivatives for self-
-concordant functions). [17] Let h : R — R be a strictly convex,
self-concordant function. Then, h" (t) satisfies:

h//(o) < (t < h (0)
2 ~

(1 +t\/W) b (1 —t h”(()))2

where both bounds are valid for 0 < t < 1/4/h"(0).

)

3. GRAPH SELECTION VIA PROXIMAL METHODS

Given that F((®) := f(©) + ¢g(®) is strictly convex and provided
a putative solution ®; € S’} ., an iterative descent scheme follows:

®¢+1 =0O; + TZ-*A,

where A € R™ ™ is a descent direction such that F(®;11) <
F(©;) for ¥ > 0. To compute {A,7;*}, we can form the fol-
lowing optimization problem:

{A, 7} = argmin {F(®; +7A):0; +TA >0}. @)

AeR" X" 7>(0

While (4) is the proper way to compute a direction A and a cor-
responding step size 7¥, in this paper we present an approximation
scheme to (4) that introduces the notion of self-concordance in step
size selection and performs extremelly well in practice; we reserve
the detailed convergence analysis for an extended version.

To this end, the proposed algorithm iteratively computes a puta-
tive solution by forming a quadratic surrogate only for f(®) at ®; €
Sty e, f(O) < U(O,0;) := f(O;)+tr(A- (O —-0,)) +
27%“@ — ©,||%, for a carefully selected 7¥ > 0 and a direction
satisfying A := —V f(©;), depending only on f(-), i.e., we ignore
the presence of g(-) in F(-). Then, instead of minimizing (2), we
iteratively solve the following problem:

®;41 = argmin {U(@, 0;) + g(@)}7 ©)
>0

which can be equivalently stated in proximity operator form [18] as:
. 1 2
©;+1 :ar(gf(l)m{ﬁ\\Qf (@ +7*A) |7 +g(®)}. (6)

The recursive relation in (6) proposes an optimization recipe : given
a step size 7;*, we perform a gradient descent step ®; + 7. A where
A := —V f(©,) followed by a soft-thresholding operation ®;,1 =
Soft (X, 7;*p) with threshold 7;*p as the closed-form solution the
the proximity operator in (6). Finally, we perform a projection onto
the positive definite cone using eigenvalue decomposition.

4. 7 SELECTION FOR SELF-CONCORDANT
FUNCTIONS

Given A := —V f(©,), we perform a gradient descent step X; =
©,— ¥V f(©,;) where 7* > 0and Vf(©,) := —©; ' + 3. Since
¥ is unknown, for clarity let X; = @; — 7V f(©,) where 7 is the
unknown variable step size. Then, for ®; := X; and @3 := ©; in
Bregman divergence, we define function ¢(7) as:

o(1) :=Ds(X; || ©;) = —logdet (X;) + log det (©;)
+ tl‘(@;l(Xi — @z))
= —logdet (©@; — 7V f(©;)) + log det (©;)
—7-tr(©; 'V f(©5)). )

In (7), we can rewrite the first log det(-) term as [17]:

— log det (©; — 7V f(©;)) = —logdet (©;) — ) log(1 — 7)),
j=1

where )\, are the eigenvalues of ©; /*V £(©,)©; /. Then:

o(r) = — Ylog(1 — 7)) — 7 WOV I(O),  ®

Jj=1

which is a self-concordant function as the superposition of a self-
concordant and a linear (thus self-concordant) function.

Remark 1. In (8), we assume 1 — 7; = 0, Vj by the definition
of the logarithm function. Subsequently, we show that our step size
selection always satisfies these conditions, ¥j.
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We observe that (8) is strictly convex as a function of 7. Apply-
ing the second order expansion (Definition 3) on ¢(7), we have:
Lemma 2. The function ¢(7) satisfies: ¢(t) = & -7 - ¢"(7), for
A2

TE€ [077'] and (z)l/(%) = Z?:l m

Proof. Fory := 7,2 := 0and -y := 7 in Definition 3, the second
order expansion of ¢(7) satisfies according to (3):

Br) = 6(0) +6(0) 7+ £ 7§ (7).
It is easy to verify the following: (i) ¢(0) = 0, (ii) ¢"(F) =

2
n A

pI m Moreover, ¢'(0) = 37_, Aj — tr(©® TV E(©))).
But 3", \j = tr (©; 'V f(©;)). Therefore, ¢'(0) = 0. O

_ 4" (0)
Let £(7) : (1+T\/¢”7(0))2'

strictly convex, the following inequalities hold true for 7 € (0, 7]:

£(r) <&(7) < ¢"(F) < &(—7) < &(—7). )

From Lemma 2, ¢”(0) = 7, A7. We know that tr(A*) =
Z?:l 5;? for A € R™™"™ where &; are the eigenvalues of A. Thus,
¢"(0) = X7_, A} = u ((©;7'Vf(©:))?).

Given (7), Lemma 2 and |X; — ©;||% = 72|V f(Y4)|3:

#'(7)

Since ¢(-) is self-concordant and

1

Dy(Xi || @) =572 ¢"(F) = Dy(X; || ©:)

2 IVf(©:)l%

Combining the above equation with (9), we locally have:

i ) ) T
A et A Sl § D VA gt
9 : (10)

14

where [, = —% _ and for § :

(177‘\/57)26
2
e :=[Vf(O)|%.
By Definition 2, a safe step size selection at the ¢-th iteration
satisfies 7;

=9 1
n= (1+ \f) (b (0) and
# .— 7 — 2/(Ji + L) which leads to the following lemma:

Lemma 3. At the i-th iteration, the step size 7 = 2/(ji + L) is

. * _ 1 1 /1, 4 ®
determined as T; = 3 (—g ta/z+ 5). Moreover, T;" is guar-

anteed to satisfy 0 < 7.5 < 4/¢"(0), Vi.

Proof. For7/* := 7 = 2/(ji + L) we obtain:

2 1 1
T=—7 5 :r2+77—5=0 (11)
(14+738)e + (1—7/8)e €
with r00tS Tmin,max = % (—% + }z + %) To use the upper

bound in (9), the solution 7 must satisfy 0 < 7 < 1/\/5 We eas-
i ( L/ 5+ %), we

3= e

L+ % > 0. Thus, 7 := Timax such that 7 + L) and
0< < L, O
/¢ (0)

Remark 2. An alternative step size selection is computed as the

minimum root of ¥ = 1/L. While this scheme performs well, it
does not exploit the strong convexity of the smooth term.

ily observe that Tmin < 0. For Tmax =

have: Tmax = O and Tmax X 5 (

T 2IVi(e)]Z

Algorithm 1 Proximal algorithm for Self-concordant functions

Input: 3! >0, p,MaxIter, tol
Initialize: @ = diag(X)™*

repeat
L {7}, Vf(©,)} = compute_tau(f], 0,) O(n®)
3. ©;41 = Soft (X;, 7¥p) o(n?)
4. If ©®;11 > 0 then continue O(1)
5. else repeat steps 2-3 with 7% := 7* /2. O(n?)
until MaxIter is reached or [2£1=9ilF ¢ o

[©i+1lF

Proposition 2. The step size selection proposed in Lemma 3 satisfies
1—75XN =0, Vjin(8)

< YT

, An]. Then,

Proof. By construction, we observe that 7;*
W = 1/”)\“2 where A 1= [Al7 .
373

>0 Vjsuchthat \; < 0 since 7* > 0,
Vj such that A\; > O since

N\
1—71X 21

177’1-*/\]' > 0

\I/\H

5. BASIC PROXIMAL ALGORITHM

Algorithm 1 shows the Proximal algorithm for Self-concordant
functions (PS) in detail. The per iteration complexity is O(n?). The
step size selection is dominated by the calculation of the gradient
Vi(©;)=-0;"! +33; an efficient way to compute @; ! is through
Cholesky factorization with O(n®) complexity. Given V f(@®;) and
©; ', the time-complexity for § := tr ((©; 'V f(©;))?) and € :=
[V £(©,)|% is O(n?) while for the quadratic form root-finding step
we need O(1) operations. The soft-thresholding operation requires
O(n?) complexity.

According to (6), we require ®; > 0, Vi. The best projection
of an arbitrary matrix onto the set of positive definite n x n matri-
ces requires an eigenvalue decomposition with O(n?) complexity; a
prohibitive time-complexity that does not scale well for many appli-
cations. In practice though, the projection onto St ; can be avoided
with a backtrack line search over 7. After soft-thresholding, we can
check ®;4+1 > 0 via its Cholesky factorization. In case @;+1 ¥} 0,
we decrease the step size 7¥ := 7 /2 and repeat steps 2 and 3 with
complexity O(n?). Otherwise, we can reuse the Cholesky factoriza-
tion of @; 41 to compute ©; ", and V f(©;1) in the next iteration.
In practice though, we rarely need this additional operation.

6. FAST PROXIMAL ALGORITHM

To gain momentum in convergence, we can use memory in esti-
mates as proposed by Nesterov for strongly convex functions [15];
the same acceleration technique has been integrated in other convex
approaches and problems such as [11, 19]. Moreover, to overcome
the oscillatory behaviour in the trace of the objective value due to
the momentum update, we can use adaptive “restart” techniques; c.f.
[20]. Algorithm 2 summarizes the FPS scheme; the main difference
with Algorithm 1 is that, at each iteration, we no longer operate on
the previous estimate @;_; but rather on Y; which simulates an
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Algorithm 2 Fast Proximal algorithm for Self-concordant functions

Input: 3! >0, p,MaxIter, tol
Initialize: @0 = diag(E)_l, Y1 = @0, o] = 1.
repeat

1. {7*, V£(Y3), I, E} = compute_tau(f], Y O®n®)

2. XZ = YZ - TZ*Vf(YZ) O(nQ)

3. ©; = Soft (X, 7*p) O(n?)

4. Yip1 =0; 4+ (©; —O;_q) fory; >0 O(n?)

5. If Y;4+1 > O then continue o(1)

6. else repeat steps 2-4 with 7* := 7% /2. O(n?)
until MaxIter is reached or % <tol

additional (rough) gradient descent step using the previous two es-
timates ©; and @;_1. To compute V f(Y;) at each iteration, Y;’s
shall satisfy the positive definiteness constraint.

We suggest two schemes for v; [15]: (A): v; = (0‘7’[_1> where

Q41
[~ %
14+4/14+4a2 1—/fi-T; .
aiy1 = ——5——>and ax = 1 and, (B): v; = VP We iden-
1+\/ﬁ-7'i*

tified that both strategies perform well in practice where scheme (A)
is more stable when 3 is rank-deficient (non-strictly convex case).

Since we operate on Y;, we have to guarantee the positive def-
initeness of both ®; and Y; per iteration, leading to an additional
Cholesky factorization calculation per iteration. A key lemma for an
effcient implementation of Algorithm 2 is the following:

Lemma 4. Given ©g > 0, Y;4+1 > 0 implies ©; > 0, Vi.

Proof. If Y;y1 > 0, then: ©; + ; (@)z — @7;71) > 0 =
@i (1 + '_Yl) > ’YiG')i—l = @1 > ﬂi@i—ls where ﬂl = 1121
0, Vi. Unfolding the recursion, we have:

0, > (mln{,@z, ﬂi—h -

>0

B1}) T @0 > 0, Vi, o

By Lemma 4, we can check the positive definiteness of ©;
through the Cholesky factorization of Y4 1.

7. EXPERIMENTS

Experimental configuration: we synthetically generate sparse in-
verse covariance matrices X1, according to the simple model:

S =1+, suchthat =" >0 and [ o =5, (12)

where 2 € R™™ contains random iid off-diagonal entries ~

N(0,1). Given =7', we draw {x;}7_; ~ N/(0,X) and calculate

. Given the above, we consider two test settings:

(i) n = 1000, p = n/2 and, x = 2-107% . n? To observe

interpretable results, we set p = 5 - 1072,

(i1) m = 3000, p = 5n and, k = 10™% - n?. To observe inter-
pretable results, we set p = 4 - 1072,

Linear convergence: We empirically illustrate the convergence rate
of the proposed schemes towrads a high-accuracy solution @* of
(2); we retain a convergence analysis for an extended version. Let
n ="700,p =5n,p =2-1072,k = 0.01n2. Figure 1 depicts the
linear convergence rate of the proposed schemes and their variants;
FPSa uses an adaptive restart scheme [20]. In practice, we observe
that the choice of p heavily affects the condition number of the prob-
lem and thus the convergence rate of first-order schemes.

10°

I ] [—ALM - Time: 218157
L =701 "W |---PS - - Time: 39.615s
1 |---ALM - 77 = =% - Time: 97.0125
%
-80 -=-FPS - - Time: 10.203s
—FPSa - - Time: 13.503s

W, |-a.FPS -7 = <oy —
u+L

- F©")

F(O)

-10

10

0 500 1000 0 20 40 60 80 100
Number of iterations Number of iterations

Fig. 1: Convergence rates Fig. 2: Comparison plot

Setting (i) | ALM | PS | FPS | FPSa
=T
”@H“;‘,i’fHF“F 044 | 0414 | 0.413 | 0.413
Correct 1705 1893 1893 1893
Missed 291 103 103 103
Extra 365 232 228 228
Iterations 400 379 129 114
#Inversions 400 379 129 114
Setting (44) ALM PS FPS | FPSa
E3 =T
W - | 0444 | 043 | 043
Correct - 8710 8725 8724
Missed - 290 275 276
Extra - 4 4 4
Iterations - 300 100 92
#Inversions - 300 100 92

Table 1: “Correct”, “Missed” and “Extra” stand for the edges cor-
rectly identified, missed or added in the true graph, respectively.
Maxlter = 400 and tol. = 1078, “” depicts no results due to time
overhead.

List of algorithms: We compare our scheme against ALM [3], cur-
rent state-of-the-art first-order gradient method to illustrate the ef-
fect of the step size selection. All codes are exclusively written in
MATLAB.

Convergence comparison: Figure 2 summarizes the convergence
performance of the aforementioned schemes. We simulate test set-
ting (7). Here, “ALM - 7% = ﬁJ%E corresponds to ALM [3] using
7. in both steps of the algorithm, thus illustrating the universality of

our step size selection. All algorithms use 7;* = ﬁi 7 and y; — (B).

299

Sparsity pattern recovery performance: For each test setting, we
record the median values over 50 Monte-Carlo realizations. Table 1
summarizes the results.

8. CONCLUSIONS

Many state-of-the-art gradient approaches for sparse inverse covari-
ance estimation in GMRFs use heuristics to compute a step size
which introduce additional “computational losses” due to matrix in-
version recalculations or slow convergence. In this work, we present
a first-order proximal method which, at its core, utilizes a novel
adaptive step size selection procedure based on the self-concordance
property of the objective value. Numerical results indicate that our
methods overcome state-of-the-art first order methods. Moreover,
our framework extends straightforwardly to many convex regulariz-
ers; following a simplistic avenue to solve the problem is valuable
for the universal application of the algorithm to diverse problems.
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