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ABSTRACT

While noise free matrix completion has a considerable history
recent interest has centered on a noisy version of the problem.
We consider a nuclear norm penalised least squares formula-
tion. And by applying the SURE method, we develop for the
first time, an automatic procedure for selecting the penalty
parameter. We illustrate its use with some simulation results.

Index Terms— denoising, matrix completion, model se-
lection

1. INTRODUCTION

Matrix completion involves the recovery of a matrix of in-
terest from possibly noisy measurements of some ( hence in-
complete information) its elements. Matrix completion has
already a considerable history with applications in areas such
as; collaborative filtering (e.g. predicting customer prefer-
ences from a subset of available expressed preferences) [1];
remote sensing e.g. filling out a correlation matrix from some
of its entries [2] ; computer vision [3] and others.

An early survey is [4]. Matrix completion is an ill-
conditioned inverse problem and so there are many kinds of
matrix completion problems roughly corresponding to the
kind of regularization used to make them solvable. Low rank
and positive definiteness [5] are two of the most common. A
survey of another special class of problems is in [6]; in fact
Prof Hogben’s web page has a wealth of references and links.

Much of the recent interest in the Electrical Engineering
community derives from a new emphasis on noisy problems.
And a number of interesting algorithms have been developed
for the noisy problem in recent years involving application of
a constraint on the nuclear norm, [7],[8],[9],[10],[11].

But resolution of an ill-conditioned inverse problem in-
variably involves the choice of a tuning parameter such as
a penalty parameter in a penalised least squares formulation.
And it is a well known feature of ill-conditioned inverse prob-
lems that the penalty parameter has a dramatic effect on the
estimate. Thus automatic choice of the penalty parameter is
important in practice. And so far there does not appear to
be any work on choosing such penalty parameters for matrix

completion problems. In this paper we develop for appar-
ently the first time, an automatic procedure for selecting such
a penalty parameter. Our approach is based on the SURE
methodology [12].

The remainder of the paper is organised as follows. In
section 2 we review the nuclear norm penalised least squares
matrix completion problem describing a particular algorithm
due to [10]. In section 3 we develop the SURE selector. An
illustrative simulation is given in section 4. Conclusions are
in section 5.

Notation. In the sequel we will deal with m× n matrices
and denote R = {(i, j) : 1 ≤ i ≤ m; 1 ≤ j ≤ n}.
Ro will be a subset of R of

′
observed

′
indices

of dimension ko.
Rρ = R−Ro consists of remaining indices
of dimension kρ.
Given an m× n matrix A we specify that,
Ao is A but entries with indices in Rρ are set to zero.
Aρ is A but entries with indices in Ro are set to zero.
Thus we can write A = Ao +Aρ.
Also Ai,j is the (i, j) element of A.
Frobenius norm: ‖ A ‖2F= trace(ATA) = Σi,jA

2
i,j .

SVD = singular value decomposition.

Heaviside step function: H(x) =
{

1,x≥0
0,x<0

}
; Dirac Delta δ(x);

Kronecker Delta δu,v =
{

1,u=v
0,u6=v

}
.

2. NOISY MATRIX COMPLETION

We suppose available a noisy measurement Ym×n of a matrix
Mm×n of low rank r << min(m,n) according to the model,

Yi,j = Mi,j + εi,j , (i, j) ∈ Ro

where εm×n is a matrix whose entries are independent Gaus-
sian white noises of variance σ2.

The measurement Y is incomplete in that no measur-
ments are available for indices outside Ro i.e. for the
′
completing

′
indices in Rρ. Thus Y = Y o, Y ρ = 0.

The matrix completion problem is to provide estimates for
the unobserved entries Mρ in M thereby completing the ma-
trix M . This is possible because of the low rank assumption
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onM . Indeed under certain conditions [13] among others has
shown this is possible with high probability.

We consider the following penalised least squares ap-
proach,

minMJ(M) : J(M) =
1

2
‖ Y o −Mo ‖2F +h ‖M ‖∗

(2.1)
where, to be clear, ‖ Y o−Mo ‖2F = Σ(i,j)∈Ro(Yi,j −Mi,j)

2

and where ‖ M ‖∗ is the so-called nuclear norm and is just
the sum of the singular values of M . It is known that this
optimization problem is convex [14].

A number of algorithms have been developed in recent
years for solving this problem [8] particularly using semi-
definite programming but these run into problems with high
dimensional data. Most interesting then, is the very simple
and very fast algorithm developed recently by [10]. It is based
on the following remarkable result of [7].

If Xm×n has rank r and SVD, X = Um×rDr×rV
T , with

D = diag(dt) then the solution to,

minM
1

2
‖ X −M ‖2F +h ‖M ‖∗

is M∗ = Sh(X) = UDhV
T where, Dh = diag((dj − h)+)

and using the heaviside step function H(·),

(dj − h)+ = max(dj − h, 0) = (dj − h)H(dj − h) (2.2)

Note the presence of soft thresholding of the singular values.
Thus h can be interpreted as a thresholding parameter.

Using this result [10] develop the following algorthim for
solving (2.1) which they call SOFT-IMPUTE (SI). Initialize
Mold = 0.

a Compute Mnew = Sh(Y o +Mρ
old)

b If ‖Mnew −Mold ‖F / ‖Mold ‖F< tol stop.

c Else set Mold = Mnew; go to a.

We use the SI algorthm in our computations below.
Denote the converged value by M̂ . Then at convergence,

M̂ = Sh(Y o + M̂ρ) = Sh(Y + M̂ρ) (2.3)

This is in fact an optimality condition and any convergent al-
gorithm must satisfy it at convergence.

3. PENALTY PARAMETER SELECTION WITH
SURE

Here we develop a SURE (Stein
′
s unbiassed risk estimator)

procedure for choosing h. Common methods for tuning pa-
rameter selection [15] such as AIC,BIC are not obviously
applicable here since they require the tuning parameter be
discrete valued e.g. a model order or dimension; whereas
here the tuning parameter h is continuous valued. We thus

consider the SURE method suggested in two special cases
by [16],[17] and then for general use by this author [12]
followed by numerous applications (see references in [18]).
Other more recent papers using SURE include [19],[20],[21].

The idea behind SURE is that ideally we would like to
choose h to minimize the risk Rh = E ‖ Mo − M̂o ‖2F .
But this cannot be computed since we don

′
t know Mo. How-

ever it is possible to find an empirically computable unbiassed
estimator of Rh, namely R̂h and we minimize that instead.
Because R̂h is unbiassed it

′
s minimizer should, on average,

produce a good value for h. In practice we plot R̂h for a min-
imum in h.

The SURE, R̂h has the traditional form for a tuning pa-
rameter selector i.e. residual sum of squares plus complexity
penalty, and is given by the general expression [12]

R̂h =‖ Eo ‖2F +2σ2τh (3.1)

where Eo is the residual Eo = Y o − M̂o and,

τh = Σ(u,v)∈Ro
∂M̂o

u,v

∂Yu,v
(3.2)

Our task now is to compute the derivatives in τh; but this is
not straightforward, there being no explicit expression for M̂ .

3.1. Getting τh

Instead we differentiate through the optimality equation (2.3).
To facilitate that we rewrite it as,

M̂ = Sh(A), A = Y o + M̂ρ (3.3)

Then using the chain rule we find,

∂M̂

∂Yu,v
= Σk,lW

k,l ∂Ak,l
∂Yu,v

, (u, v) ∈ Ro

where we have introduced, W k,l = ∂Sh(A)
∂Ak,l

. We discuss its
computation below. Now using (3.3) we find,

∂M̂

∂Yu,v
= Σk,lW

k,l(δk,uδv,l +
∂M̂ρ

(k,l)

∂Yu,v
)

= Wu,v + Σ(a,b)∈RρW
a,b
∂M̂ρ

(a,b)

∂Yu,v

where δk,i is Kronecker
′
s delta (see notation). In component

form this becomes,

∂M̂k,l

∂Yu,v
= Wu,v

k,l +Σ(a,b)∈RρW
a,b
k,l

∂M̂ρ
(a,b)

∂Yu,v
, (k, l) ∈ R (3.4)

Restricting the components to Rρ gives,

∂M̂ρ
(c,d)

∂Yu,v
= Wu,v

c,d + Σ(a,b)∈RρW
a,b
c,d

∂M̂ρ
(a,b)

∂Yu,v
, (c, d) ∈ Rρ

(3.5)
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and these equations can be solved to deliver
∂M̂ρ

(a,b)

∂Yu,v
as we

shortly describe. Then from (3.4),(3.2) we also have,

∂M̂o
u,v

∂Yu,v
= Wu,v

u,v + Σ(a,b)∈RρW
a,b
u,v

∂M̂ρ
(a,b)

∂Yu,v
, (u, v) ∈ Ro

⇒ τh = Σ(u,v)∈Ro(W
u,v
u,v + Σ(a,b)∈RρW

a,b
u,v

∂M̂ρ
(a,b)

∂Yu,v
)

(3.6)

Returning to (3.5) we vectorise the equations. Put

∇u,v = vec(
∂M̂ρ

(a,b)

∂Yu,v
), (a, b) ∈ Rρ

Wu,v
ρ = vec(Wu,v

c,d ), (c, d) ∈ Rρ
Then (3.5) can be rewritten,

∇u,v = Wu,v
ρ +K∇u,v ⇒ ∇u,v = (I −K)−1Wu,v

ρ (3.7)

where Kkρ×kρ is obtained from W a,b
c,d by running through the

indices in the order a, b, c, d for (a, b) ∈ Rρ and (c, d) ∈ Rρ.
To sum up, we use (3.7) to get∇u,v which is then used in

(3.6) to get τh and so SURE=R̂h from (3.1).

3.2. Getting W k,l

Recall that if A has SVD, A = QDPT = Σσtqtp
T
t where

qt, pu are the columns respectively of Q,P then Sh(A) =
Σσ∗t qtp

T
t where from (2.2) σ∗t = (σt − h)H(σt − h). So,

∂Sh(A)

∂Ak,l
= Σ[

∂σ∗t
∂Ak,l

qtp
T
t + σ∗t

∂qt
∂Ak,l

pTt + σ∗t qt
∂pTt
∂Ak,l

]

We next note that, since d
dxH(x) = δ(x),

∂σ∗t
∂Ak,l

=
∂

∂Ak,l
(σt − h)H(σt − h)

=
∂σt
∂Ak,l

(H(σt − h) + (σt − h)δ(σt − h))

=
∂σt
∂Ak,l

H(σt − h)

Recalling that the singular values are ordered from largest to
smallest we now deduce that if r = # singular values with
σt > h then, σ∗t = σt − h, 1 ≤ u ≤ r and

∂Sh(A)

∂Ak,l
= Σr1[

∂σt
∂Ak,l

qtp
T
t + σ∗t

∂qt
∂Ak,l

pTt + σ∗t qt
∂pTt
∂Ak,l

]

We now need to compute the derivatives of singular-vectors
and singular values of A with respect to the elements of the
matrix A. By using related formulae for such derivatives for
positive definite matrices given in [22] it can be shown

W k,l =
∂Sh(A)

∂Ak,l
= QrF

k,lPTr

F k,l = F k,lq + (F k,lp )
′
+ diag(

∂σt
∂Ak,l

)
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rank

h

Fig. 1. SURE and Rank (case I)

where Qr consists of the first r columns of Q and similarly
for Pr; and then F k,l is an r× r matrix. The columns of F k,lq

are of the form (σt − h)φ(t) and those of F k,lp of the form
(σt − h)ψ(t) where,

φ(t)s =
{ 0 , s = t
ωsαs+(1−ωs)βs

σt−σs , s 6= t

}
(3.8)

ψ(t)
s =

{ 0 , s = t
ωsβs+(1−ωs)αs

σt−σs , s 6= t

}
(3.9)

and, ωs = σt
σt+σs

, αs = qk,spl,t, βs = qk,tpl,s also, ∂σt
∂Ak,l

=
qk,tpl,t.

4. SIMULATION STUDY

We use the same class of examples as in [10]. The model is
M = Um×rV

T
n×r where the entries of U, V, ε/σ are indepen-

dent Gaussian white noises of unit variance. The observed
indices are selected at random leaving an average fraction f
missing. The noise variance σ2 is selected indirectly by speci-
fiying a signal to noise variance ratio (SNVR) as SNV R =
var(M)/var(ε) ([10] use a nonstandard definition of SNR;
our SNVR is the square of their SNR).

We consider two cases each with m = n = 30 and case I
has rank 5 while case II has rank 8. Each case has 50% miss-
ing values and SNVR = 50. ([10] considered mostly higher
values of SNVR).

In Fig.1 for case I is a plot of SURE=R̂h as well as the
recovered rank. We see that h = 3.75 minimizes SURE; with
corresponding correct rank of 5.

In Fig.2 for case II is a plot of SURE =R̂h as well as the
recovered rank. We see that h = 4.7 minimizes SURE with a
corresponding rank of 9 very near the correct value of 8.

The spiking behaviour evident in both plots is due to
the division by differences between close singular values in
(3.8),(3.9).
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Fig. 2. SURE and Rank (case II)

5. CONCLUSION

In this paper, using the SURE methodology, we have devel-
oped for the first time, an automatic penalty parameter se-
lector for noisy matrix completion when solved by nuclear
norm penalised least squares. The computations are relatively
straightforward relying on SVD and matrix inversion. The
method was illustrated with two simulation examples.
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