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ABSTRACT

Compressive Sensing is possible when the sensing matrix acts as
a near isometry on signals of interest that can be sparsely or com-
pressively represented. The attraction of greedy algorithms such as
Orthogonal Matching Pursuit is their simplicity. However they fail
to take advantage of both the structure of the sensing matrix and any
prior information about the sparse signal. This paper introduces an
oblique projector to matching pursuit algorithms to enhance detec-
tion of a component that is present in the signal by reducing inter-
ference from other candidate components based on prior informa-
tion about the signal as well as the structure of the sensing matrix.
Numerical examples demonstrate that performance as a function of
SNR is superior to conventional matching pursuit.

Index Terms— matching pursuit, sparsity, support recovery,
oblique projection

1. INTRODUCTION

Compressive Sensing (CS) [1] employs algorithms such as `1 mini-
mization [2] or greedy pursuits [3] to recover signals that are sparse
or compressible. The attraction of greedy algorithms is their sim-
plicity, but the performance is strongly dependent on the worst case
coherence of the sensing matrix (the maximal off-diagonal entry in
the Gram matrix).

There are important applications such as microscopy [4] and
high resolution spectrum analysis where the sensing matrix is de-
termined by the point spread function of the underlying physics and
cannot be optimized to satisfy near-isometry properties. In these ap-
plications, Orthogonal Matching Pursuit (OMP) [3] is known to per-
form poorly [5]. There is however a long tradition in radar receiver
design of using a mismatched filter [6, 7] rather than a matched filter
to modulate the ambiguity function of a transmitted waveform. A re-
cent example is a passive radar for which the illuminating waveform
is the DVB-T television signal [8]. It is natural to connect the Gram
matrix in sparse recovery with the ambiguity function in radar signal
processing. Motivated by this connection, we propose a new algo-
rithm called Oblique Matching Pursuit (ObMP) where an oblique
projector manages the Gram of the sensing matrix.

We also propose to optimize the oblique projector to take ad-
vantage of signal priors. We note that it is common practice in radar
signal processing to optimize the waveform so the sidelobes of the
ambiguity function are suppressed where the target is most likely to
occur [9]. We optimize the oblique projector in ObMP to shape the
expected Gram of the sensing matrix, for example to suppress the
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off-diagonal entries in the Gram matrix with higher nonzero prob-
abilities. However, the signal-to-noise ratio (SNR) is traded off by
not correlating with the original sensing matrix, in order to obtain
gain in desired interference suppression, which is confirmed in both
theoretical analysis and numerical examples.

Note that while Lee et. al. [10] also introduce oblique projectors
in matching pursuits algorithms, similar to our approaches. How-
ever, their focus of analysis is preservation of the restricted isometry
property, whereas our focus is on coherence properties. More im-
portantly, we propose to find an oblique projector via optimization
of coherence properties which allows incorporation of prior infor-
mation about the signal and the structure of the sensing matrix.

The rest of the paper is organized as follows. Section 2 presents
the framework where an oblique projector is introduced in matching
pursuit. Section 3 discusses optimization of the oblique projector
with respect to the structure of the sensing matrix and the signal
prior. Section 4 provides numerical examples and we conclude in
Section 5.

2. FRAMEWORK

Given a measurement vector

z = Xβ + η ∈ Cn, (1)

where X is an n × p unit-column sensing matrix, β ∈ Cp is a k-
sparse vector, and η ∈ Cn ∼ N (0, σ2) is the white additive Gaus-
sian noise, our goal is to reconstruct the sparse vector β from noisy
measurements z. If the support of β is correctly detected, the sig-
nal β can be reconstructed by least-squares estimation using the re-
stricted sensing matrix with columns corresponding to the nonzero
entries, hence we restricted ourselves to support recovery, i.e. find-
ing the support of β.

We now introduce the oblique operator Y with respect to X ,
which is a second n × p matrix, also with unit column norms. Al-
gorithm 1 and Algorithm 2 describe the proposed Sorted Oblique
Thresholding (SObT) and Oblique Matching Pursuit (ObMP) algo-
rithms. When Y = X , they are equivalent to the conventional one-
step thresholding (OST) [11] and OMP respectively.

Algorithm 1 Sorted Oblique Thresholding (SObT)

1: f := Y Hz;
2: Denote the ordering of the entries in |f | by I;
3: Ŝ := I(1 : k).

Instead of correlating the received signal with X , it is now cor-
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Algorithm 2 Oblique Matching Pursuit (ObMP)

1: Initialization: Ŝ0 := empty set, residual r0 = z
2: for t := 1 : k do
3: f := Y Hrt−1

4: i := arg maxj |fj |, where fj is the jth entry of f .
5: Ŝt := Ŝt−1 ∪ {j}
6: rt := z −XŜt(Y

H
Ŝt
XŜt)

−1Y HŜt z
7: end for
8: Ŝ := Ŝk

related with Y in Algorithm 1 and 2, yielding the output

f = Y Hz = Y HXβ + Y Hη , Gβ + Y Hη, (2)

where G = Y HX = [gij ] is the new Gram matrix, and G is not
Hermitian in general. Algorithm 2 further assumes an oblique pro-
jection in step 6, so that the residual at the tth step rt is orthogonal
to the selected columns in YŜt

, i.e. Y H
Ŝt
rt = 0. This guarantees a

new atom is selected in the next step.

3. KNOWLEDGE-ENHANCED MATCHING PURSUIT

Since X and Y have unit norm columns, any diagonal entry of G
satisfies |gii| = |〈yi, xi〉| = |yHi xi| ≤ 1. We single out the smallest
diagonal entry of G by defining

α(X,Y ) = min
i
|gii|;

and single out the largest off-diagonal entry of G by defining the
worst case mutual coherence

µ(X,Y ) = max
i 6=j
|gij |.

WhenX = Y we denote the worst-case mutual coherence by µ(X),
which degenerates to the coherence of X .

These two quantities are sufficient to provide the performance
guarantees given in Theorem 1 below.

Theorem 1. The SObT algorithm for the measurement in (1) suc-
ceeds with probability at least 1− (πp)−1 as long as

βmin ≥
2µ(X,Y )

α(X,Y )
‖β‖1 +

2σ
√

log p

α(X,Y )
, (3)

where βmin = mini |βi| the minimum nonzero entry of β.

Proof: We first use Proposition 5 in [12] which shows with proba-
bility at least 1− (πp)−1, the noise is bounded as

‖Y Hη‖∞ ≤ σ
√

2 log p. (4)

Define the event when (4) happens as G. Let Π be the support of β,
and Πc = {1, · · · , p}\Π. Under G, for i ∈ Π,

|yHi z| = |yHi xiβi +
∑

j 6=i,j∈Π

yHi xjβj + yHi η|

≥ α(X,Y )|β|min − µ(X,Y )‖β‖1 − σ
√

2 log p, (5)

and for i ∈ Πc,

|yHi z| = |
∑
j∈Π

xHi xjβj + xHi η|

≤ µ(X,Y )‖β‖1 + σ
√

2 log p, (6)

The SObT algorithm succeeds when

min
i∈Π
|yHi z| ≥ max

i∈Πc
|yHi z|, (7)

which is equivalent to (3) combining (5) and (6).
�

Since α(X,Y ) ≤ 1, the second term in (3) is larger than for
OST, so we lose noise resilience. Consider the first term in (3), and
assume that the worst-case coherence µ(X) of X is on the order
of n−1/γ where γ ≥ 2 from the Welch bound. When γ > 2, it
is possible to make µ(X,Y )/α(X,Y ) much smaller than µ(X),
therefore we gain in interference suppression. This trade-off can be
quantified using the following generalized Welch bound.

Theorem 2 (Generalized Welch bound). Let X and Y be unit-
column matrices of dimension n × p, and G = Y HX = [gij ],
then

max
i 6=j
|gij |2 ≥

1

p(p− 1)
gT (

J

n
− I)g (8)

where g is the vector composed of the diagonal terms of G, and J is
the p× p matrix with every entry 1.

Proof: The Frobenius norm of G is given as

‖G‖2F =

p∑
i=1

p∑
j=1

|〈xi, yj〉|2 =

p∑
i=1

p∑
j=1

|gij |2 =

p∑
i=1

λ2
i ,

where λi’s are singular values of G. We write the trace of G as

tr{G}2 = gTJg = (

r∑
i=1

λi)
2 ≤ r

r∑
i=1

λ2
i ≤ n

p∑
i=1

λ2
i ,

where the first inequality follows from the Cauchy-Schwartz in-
equality, and r is the number of non-zero singular values which is
upper bounded by n. Therefore

‖G‖2F = gT g +
∑
i 6=j

|gij |2 ≥
tr{G}2

n
=

1

n
gTJg,

then we have

max
i 6=j
|gij |2 ≥

1

p(p− 1)

∑
i 6=j

|gij |2 ≥
1

p(p− 1)
gT (

J

n
− I)g.

�
Discussions: When p ≤ n, we may force µ(X,Y ) = 0

by choosing Y to be the column normalized version of X† =
X(XHX)−1, but the cost is reduction in α(X,Y ) that may result
in diminished performance.

When p > n, we consider a special case using Theorem 2 to
exemplify the trade-off between α(X,Y )/µ(X,Y ) and α(X,Y ).
Choose Y such that g can be written as g = gv(1 + εr), where r is
an vector with even number of 1’s and−1’s, so 1T r = 0. Moreover,
α(X,Y ) is upper bounded by α(X,Y ) = gv(1 − ε) ≤ 1−ε

1+ε
, and

from Theorem 2 we have

max
i6=j
|gij |2 ≥

1

p(p− 1)
g2
v(
p2

n
− p− ε2p) =

g2
v(p− n− nε2)

n(p− 1)
,
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(a) Original Gram matrix (b) `2-optimized Gram matrix (c) `∞-optimized Gram matrix

Fig. 2. The original and optimized Gram matrices: (a) original, (b) `2-optimized and (c) `∞-optimized.
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Fig. 3. The probability of error for support recovery with respect to the sparsity level of different optimized oblique projectors under (a) SNR
= 20dB, (b) SNR = 30dB and (c) SNR = 40dB.
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Fig. 1. α(X,Y ) versus α(X,Y )/µ(X,Y ) under the special case
when g = gv(1 + εr), where r has an even number of 1’s and −1’s.

Hence α(X,Y )/µ(X,Y ) is upper bounded by

α(X,Y )

µ(X,Y )
≤ (1− ε)

√
n(p− 1)

p− n− nε2 .

Fig. 1 shows the upper bound of α(X,Y ) versus the upper bound
of α(X,Y )/µ(X,Y ) when n = 500 and various p. An interest-
ing phase transition occurs when p = 2n. As the upper bound

of α(X,Y )/µ(X,Y ) decreases, the upper bound of α(X,Y ) de-
creases monotonically when p > 2n; and it first decreases and then
increases dramatically when p < 2n, indicating the potential gain of
exploring this trade-off at high SNR regime.

3.1. Optimization with respect to the sensing matrix

We propose two methods of optimizing Y , based on minimization
of the `2 distance and the `∞ distance between the Gram matrix G
and the identity matrix respectively, ie.

Y = argmin
Y

‖Y HX − I‖2p, (9)

which can be decomposed for each column yi of Y as

yi = argmin
yi

‖yHi X − eTi ‖2p, (10)

where p = 2 or∞, ei is the ith column of the identity matrix. When
p = 2, (10) can be regarded as optimization of the spectral norm
of (Y HX − I), and yi = (XXH)−1xi. When p = ∞, (10) can
be regarded as optimization of the worst-case mutual coherence of
Y and X , and yi can be found via linear programming. Then the
normalized solution is given as y∗i = yi/‖yi‖ for i = 1, · · · , p.

3.2. Optimization with respect to the signal prior

We consider a model for the sparse signal β in which a non-zero
entry appears in position i with probability wi, and

∑p
i=1 wi = 1.

This model is different from block or group sparsity and is motivated
in part by sensing of frequency sparse signals where we have prior
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information about the transmitted spectrum [13] and by multi-user
detection where we have prior information about active patterns of
different users [14].

It is desirable to optimize the Gram matrix G = Y HX to match
the probability distribution of the signal support, so that the cross-
terms corresponding to indices with higher probability are smaller
than those corresponding to indices with lower probability. To this
end, we propose the following optimization problem, given as

Y = argmin
Y

p∑
i=1

p∑
j=1

wj((Y
HX)ij − δij)2, (11)

where we assume the prior probability is used directly as the weight.
This can again be decomposed for each column yi of Y as

yi = argmin
yi

p∑
j=1

wj((y
H
i X)j − δij)2

= argmin
yi

(XHyi − ei)HWi(X
Hyi − ei), (12)

where Wi = diag{w1, · · · , wp}. Then yi can be written explicitly
as

yi = wi(XWiX
H)−1xi. (13)

Then the normalized column is given as y∗i = yi/‖yi‖.

4. NUMERICAL EXAMPLES

4.1. Optimization with respect to sensing matrix

We first consider a case when the design matrix X doesn’t satisfy
the required near isometry property. Let n = 40, p = 100, and the
design matrixX is generated with i.i.d. uniform random variables in
[0, 1]. The support of the signal is uniformly sampled with the am-
plitude of the nonzero entries given as 1, and the noise is generated
as η ∼ N (0, σ2). The SNR is calculated as −20 log10 σ dB. Fig. 2
(a) shows the Gram matrix of the original matrix G = XHX , and
Fig. 2 (b) and (c) show the optimized Gram matrix using the oblique
operator from (9) for p = 2 and p = ∞. The optimized Gram ma-
trices have lower cross-terms but the diagonal entries are less than
one.

Fig. 3 shows the probability of error for support recovery using
Algorithm 1 and Algorithm 2 against the sparsity level when SNR
= 20dB, 30dB and 40dB. It is evident that the performance gain is
significant in the high SNR regime, as suggested by our discussions
of the trade-off of noise resilience and interference suppression. It
is also worth noting that `2-optimized oblique projector outperforms
the `∞-optimized one in most scenarios.

4.2. Optimization with respect to signal prior

In the second example, we assume the sparse signal follows a certain
prior distribution. Let n = 40, p = 100, and the design matrix X
is generated with i.i.d. standard Gaussian entries. The probability
wi that the ith entry of the signal β is nonzero is proportional to
e−(i−50)2/2, and the amplitude is 1.

Fig. 4 (a) shows the optimized Gram matrix obtained via (13),
where the cross terms are particularly lower around the center due to
higher probability of these entries being nonzero. Fig. 4 (b) shows
the probability of error for support recovery using Algorithm 1 and
Algorithm 2 against the sparsity level, where the sparse signal is gen-
erated with replacement following the above distribution when SNR

is 40dB. The optimized oblique operator performs significantly bet-
ter than the `2 optimized operator without considering prior infor-
mation and the original choice.
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Fig. 4. When the support is generated following a probability distri-
bution: (a) the optimized Gram matrix; (b) the probability of error
for support recovery using oblique projectors.

5. CONCLUSIONS

In this paper we considered optimization of OST and OMP for sparse
support recovery based on oblique projections. Motivated by the
mismatched filter design in radar, the introduction of an oblique pro-
jector optimizes the Gram matrix of the sensing matrix in particular
when it does not satisfy the required near isometry properties of CS,
and allows explicit exploitations of signal priors into the recovery
algorithms. We also explained the trade-off between noise resilience
and interference suppression, hence the approach is more favorable
in the high SNR regime. Numerical examples are provided to show
the proposed approach achieves better performance by exploring the
knowledge at hand. Future work includes exploitation of more so-
phisticated signal priors and extensions to other algorithms.
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