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ABSTRACT
An original interface between robust estimation theory and random
matrix theory for the estimation of population covariance matrices
is proposed. Consider a random vector x = ANy ∈ CN with
y ∈ CM made of M ≥ N independent entries, E[y] = 0, and
E[yy∗] = IN . It is shown that a class of robust estimators ĈN
of CN = ANA

∗
N , obtained from n independent copies of x, is

(N,n)-consistent with the traditional sample covariance matrix ŜN
in the sense that ‖ĈN − αŜN‖ → 0 in spectral norm for some
α > 0, almost surely, as N,n→∞ with N/n and M/N bounded.
This result, in general not valid in the fixed N regime, is used to
propose improved subspace estimation techniques, among which
an enhanced direction-of-arrival estimator called robust G-MUSIC.

Index Terms— random matrix theory, robust estimation.

I. INTRODUCTION
Many multi-variate signal processing detection and estimation

techniques are based on the empirical covariance matrix of a
sequence of samples x1, . . . , xn from a random population vector
x ∈ CN . Assuming E[x] = 0 and E[xx∗] = CN , the strong law
of large numbers ensures that, for independent and identically dis-
tributed (i.i.d.) samples, ŜN = 1

n

∑n
i=1 xix

∗
i → CN almost surely

(a.s.), as the number n of samples increases and N is fixed. Many
subspace methods, such as the multiple signal classifier (MUSIC)
algorithm and its derivatives [1], [2], heavily rely on this property
by identifying CN with ŜN , leading to appropriate approximations
of functionals of CN in the large n regime. However, this standard
approach has two major limitations: the inherent inadequacy to
small sample sizes (when n is not too large compared to N ) and
the lack of robustness to outliers or heavy-tailed distribution of x.

The sample covariance matrix (SCM) ŜN is an object of
primal interest since it is the maximum likelihood estimator of
CN for x Gaussian. When x is not Gaussian, the SCM as an
approximation of CN may however perform very poorly. This
was particularly recognized in adaptive radar and sonar processing,
where the signals under study are characterized by impulsive noise
and outlying data. Robust estimates of CN aim at tackling this
problem [3], [4] and have imposed themselves as an appealing
alternative to the SCM. These estimators, denoted ĈN here, are
usually defined implicitly as a solution of an equation of the type

ĈN =
1

n

n∑
i=1

u

(
1

N
x∗i Ĉ

−1
N xi

)
xix
∗
i (1)
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for u a nonnegative function with specific properties. These estima-
tors are particularly appropriate as they are the maximum likelihood
estimates of (a scaled version of) CN for specific distributions of
x, such as the family of elliptical distributions [5]. They are also
used to cope with distributions of x with heavier-than-Gaussian
tails, such as the K-distribution often met in the context of adaptive
radar processing with impulsive clutter [6].

A second angle of improvement of subspace methods has re-
cently emerged due to advances in random matrix theory. The latter
aims at studying the statistical properties of matrices in the regime
where both N and n grow large. It is known in particular that, if
x = ANy with y ∈ CM , M ≥ N , a vector of independent entries
with zero mean and unit variance, then, under some conditions
on CN = ANA

∗
N and y, in the large N,n (and M ) regime, the

eigenvalue distribution of (almost every) ŜN converges weakly to
a limiting distribution described implicitly by its Stieltjes transform
[7]. In the past ten years, this result and subsequent works have been
applied to revisit classical signal processing techniques assuming
n� N and turn them into improved methods assuming N and n
of the same order of magnitude.

In this article, we study the asymptotic first order properties
of the robust M-estimate ĈN of CN as N , n (and M ) grow
large simultaneously. Under the assumption that x is of the type
x = ANy with y having independent zero-mean entries, it is
possible to prove that ĈN and ŜN have a close behaviour. Our main
contribution consists in showing that, in the large N,n regime, and
under some mild assumptions, ‖ĈN − αŜN‖ → 0, a.s., for some
α > 0 to be defined. A major consequence of our result is that the
matrix ŜN , at the core of many random matrix-based estimators,
can be straightforwardly replaced by ĈN without altering the first
order properties of these estimators. We generically call the induced
estimators robust G-estimators. As an application example, we
provide a robust direction-of-arrival estimator, referred to as robust
G-MUSIC, based on the G-MUSIC estimator from Mestre [8].

The remainder of the article is structured as follows. Section II
provides our theoretical results. Section III introduces the robust
G-MUSIC estimator. Section IV then concludes the article. The
detailed proofs are available in the extended version of the present
article [9].

Notations: The arrow ‘ a.s.−→’ denotes almost sure convergence.
The norm ‖ · ‖ is the spectral norm for matrices and the Euclidean
norm for vectors. AT and A∗ are the transpose and Hermitian
transpose of A, respectively. For A ∈ CN×N Hermitian, λ1(A) ≤
. . . ≤ λN (A) are its ordered eigenvalues.
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II. MAIN RESULTS
Let X = [x1, . . . , xn] ∈ CN×n, where xi = ANyi ∈ CN ,

with yi = [yi1, . . . , yiM ]T ∈ CM having independent entries with
zero mean and unit variance, AN ∈ CN×M , and CN , ANA

∗
N ∈

CN×N be a positive definite matrix. We denote cN , N/n, c̄N ,
M/N , and define the sample covariance matrix ŜN of the sequence
x1, . . . , xn by

ŜN ,
1

n
XX∗ =

1

n

n∑
i=1

xix
∗
i .

Let u : R+ → R+ (R+ = [0,∞)) be a function fulfilling the
following conditions:
(i) u is nonnegative, nonincreasing, and continuous on R+;

(ii) the function φ : R+ → R+, s 7→ su(s) is nondecreasing
and bounded, with supx φ(x) = φ∞ > 1. Moreover, φ is
increasing in the interval where φ(s) < φ∞.

Classical M-estimators ĈN defined by (1) for such function u
include the Huber estimator, with φ(s) = s for s ∈ [0, φ∞], φ∞ >
1, and φ(s) = φ∞ for s ≥ φ∞. Since u(s) = 1 for s ≤ φ∞
and decreases for s ≥ φ∞, this estimator weights the majority of
the samples x1, . . . , xn by a factor 1 and reduces the impact of
outliers.

To pursue, we need the following statistical assumptions.

A1. The random variables yij , i ≤ n, j ≤ M , are independent
either real or circularly symmetric complex (i.e. E[y2ij ] = 0) with
E[yij ] = 0 and E[|yij |2] = 1. Also, there exists η > 0 and α > 0,
such that, for all i, j, E[|yij |8+η] < α.

A2. c̄N ≥ 1 and, as n→∞,

0 < lim inf
n
cN ≤ lim sup

n
cN < 1, lim sup

n
c̄n <∞.

A3. There exists C−, C+ > 0 such that

C− < lim inf
N
{λ1(CN )} ≤ lim sup

N
{λN (CN )} < C+.

Note that the assumptions neither request the entries of y to be
identically distributed nor impose the existence of a continuous
density. The requirement of independence in the entries of y
is nonetheless rather uncommon in robust estimation theory and
excludes a number of practical applications. This assumption is
however central in this article for the emergence of a concentration
of the quadratic forms 1

N
x∗i Ĉ

−1
N xi, i = 1, . . . , n. Generalizations

to e.g. elliptical distributions would break this effect and are
therefore left to future work.

Technically, A1–A3 mainly ensure that the eigenvalues of ŜN
and ĈN lie within a compact set away from zero, a.s., for all
N,n large, which is a consequence (although non immediate) of
[10], [11]. Note also that A2 demands lim infN cN > 0, so that the
following results do not contain the results from [4], [12], in which
N is fixed and n→∞, as special cases. With these assumptions,
we can now provide the main technical result of this article.

Theorem 1: Assume A1–A3 and consider the following matrix-
valued fixed-point equation in Z ∈ CN×N ,

Z =
1

n

n∑
i=1

u

(
1

N
x∗iZ

−1xi

)
xix
∗
i . (2)

Then, we have the following results.

(I) There exists a unique solution to (2) for all large N a.s. We
denote ĈN this solution, given by

ĈN = lim
t→∞

Z(t)

where Z(0) = IN and, for t ∈ N,

Z(t+1) =
1

n

n∑
i=1

u

(
1

N
x∗i (Z

(t))−1xi

)
xix
∗
i .

(II) Defining ĈN = IN when (2) does not have a unique solution,
we also have ∥∥∥φ−1(1)ĈN − ŜN

∥∥∥ a.s.−→ 0.

Proof: The proof is available in the extended article [9].

An immediate corollary of Theorem 1 is the asymptotic closeness
of the ordered eigenvalues of φ−1(1)ĈN and ŜN .

Corollary 1: Under the assumptions of Theorem 1,

max
i≤N

∣∣∣φ−1(1)λi(ĈN )− λi(ŜN )
∣∣∣ a.s.−→ 0.

Some comments are called for to understand Theorem 1 in the
context of robust M-estimation.

Theorem 1–(I) can be first compared to the result from Maronna
[4, Theorem 1] which states that a solution to (2) exists for each
set {x1, . . . , xn} under certain conditions on the dimension of the
space spanned by the n vectors, as well as on u(s), N , and n
(in particular u(s) must satisfy φ∞ > n/(n − N) in [4]). Our
result is more interesting in practice in the sense that N,n no
longer condition φ∞ and therefore do not constrain the definition
of u(s), as long as N,n are taken large. Theorem 1–(I) can also be
compared to the results on uniqueness [4], [12] which hold for all
N,n under some further conditions on u(s), such as φ(s) is strictly
increasing in [4]. The latter assumption is particularly demanding
as it may reject some M-estimators such as the Huber M-estimator
for which φ(s) is constant for large s.

Theorem 1–(II), which is our main result, states that, as N and n
grow large with a non trivial limiting ratio, the fixed-point solution
ĈN is getting asymptotically close to the sample covariance matrix,
up to a scaling factor. This implies in particular that, while ĈN is
an n-consistent estimator of (a scaled version of) CN for n→∞
and N fixed, in the large N,n regime it has many of the same
first order statistics as ŜN . This suggests that many results holding
for ŜN in the large N,n regime should also hold for ĈN , at least
concerning first order convergence.

In terms of applications to signal processing, recall first that the
n-consistency results on robust estimation [4], [12] imply that many
metrics based on functionals of CN can be consistently estimated
by replacing CN by φ−1(1)ĈN . Theorem 1 suggests instead that
this approach will lead in general to inconsistent estimators in
the large N,n regime, and therefore to inaccurate estimates for
moderate values of N,n,M . However, any metric based on CN ,
and for which an (N,n)-consistent estimator involving ŜN exists,
may still be (N,n)-consistently estimated by replacing ŜN by
φ−1(1)ĈN . In the following section, we give a concrete example
in the context of MUSIC-like estimation in array processing [8].
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III. APPLICATION: ROBUST G-MUSIC
Consider K signal sources impinging on a collection of N

collocated sensors with angles of arrival θ1, . . . , θK . The data
xt ∈ CN received at time t at the array is modeled as

xt =

K∑
k=1

√
pks(θk)zk,t + σwt

where s(θ) ∈ CN is the deterministic unit norm steering vector
for signals impinging the sensors at angle θ, zk,t ∈ C is the signal
source modeled as a zero mean, unit variance, and finite 8+η order
moment random variable, i.i.d. across t and independent across
k, pk > 0 is the transmit power of source k (pk < pmax for
some pmax > 0) and σwt ∈ CN is the received noise at time t,
independent across t, with i.i.d. zero mean, variance σ2 > 0, and
finite 8 + η order moment entries.

We can write

xt = ANyt, AN ,
[
S(Θ)P

1
2 σIN

]
where S(Θ) = [s(θ1), . . . , s(θK)], P = diag(p1, . . . , pK), and
yt = (z1,t, . . . , zK,t, w

T
t )T ∈ CN+K .

Taking n independent observations x1, . . . , xn of the process
xt and assuming n,N , and M = N + K large accordingly to
Assumption A2, Assumptions A1–A3 are met and Theorem 1 can
be applied. This yields the following result.

Theorem 2 (Robust G-MUSIC): Under the current model, de-
note EW ∈ CN×(N−K) a matrix containing in columns the eigen-
vectors of CN with eigenvalue σ2. Also denote êk the eigenvector
of ĈN with eigenvalue λ̂k , λk(ĈN ) (recall that λ̂1 ≤ . . . ≤ λ̂N ),
with ĈN defined as in Theorem 1 (with ĈN = IN when (2) does
not have a unique solution). Then, as N,n→∞ in the regime of
Assumption A2, and K fixed,

γ(θ)− γ̂(θ)
a.s.−→ 0

where

γ(θ) = s(θ)∗EWE
∗
W s(θ)

γ̂(θ) =

N∑
i=1

βis(θ)
∗êiê

∗
i s(θ)

and

βi =

 1 +
∑N
k=N−K+1

(
λ̂k

λ̂i−λ̂k
− µ̂k

λ̂i−µ̂k

)
, i ≤ N −K

−
∑N−K
k=1

(
λ̂k

λ̂i−λ̂k
− µ̂k

λ̂i−µ̂k

)
, i > N −K

with µ̂1 ≤ . . . ≤ µ̂N the eigenvalues of diag(λ̂) − 1
n

√
λ̂
√

λ̂
T

,
λ̂ = (λ̂1, . . . , λ̂N )T.

Proof: The proof is available in [9].

The function γ(θ) is the defining metric for the MUSIC al-
gorithm [1], the zeros of which contain the θi, i ∈ {1, . . . ,K}.
Theorem 2 proves that the N,n-consistent G-MUSIC estimator of
γ(θ) proposed by Mestre in [13] can be extended into a robust
G-MUSIC method. The latter consists in replacing the sample
covariance matrix ŜN as in [13] by the robust estimator ĈN . The
angles θi are then estimated as the deepest minima of γ̂(θ). This
new technique is expected to perform better than either MUSIC or
G-MUSIC in the finite (N,n) regime in the case of non-Gaussian
noise, for an appropriate choice of the function u. Proving so
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Fig. 1. MSE performance of the various MUSIC estimators for
K = 1, Gaussian noise, N = 10, and n = 50.

requires the study of the second order statistics of γ(θ), which
is left to future work.

In the following, we provide comparative performance results
between the classical MUSIC, the robust MUSIC, the G-MUSIC,
and the robust G-MUSIC algorithms. We recall that the MUSIC
algorithm consists in determining the deepest local minima of

γ̂∞(θ) =

N−K∑
i=1

s(θ)∗êSi ê
S∗
i s(θ)

where êSi is the eigenvector associated with the i-th smallest
eigenvalue of ŜN . Robust MUSIC is equivalent to MUSIC but uses
êi instead of êSi in the expression of γ̂∞(θ). G-MUSIC determines
the local minima of γ̂(θ) but with êSi instead of êi. Finally, robust
G-MUSIC seeks the minima of γ̂(θ), as described in Theorem 2.

We take zk,t standard Gaussian, independent across k and t, and
wt a vector with independent zero-mean unit variance entries with
either Gaussian or Student-t distribution with ν > 2 degrees of
freedom. The case wt Gaussian is used as a reference scenario.
The choice of wt with Student-t entries and ν large is used to
model the more realistic scenario of a sensor array with close-to-
Gaussian noise. For small ν (resulting into a noise distribution with
heavier tails), the scenario can be either used to reflect independent
antenna reading errors in a sensor array or to model a distributed
sensor network in which each sensor faces independent impulsive
noise (e.g. in a MIMO-STAP setting [14], [15]). We choose u(s) =
(1 + ν′)/(ν′ + s), for some ν′ > 0 which controls the degree of
robustness of the estimator (ν′ → ∞ brings u(s) = 1, hence
reduced robustness). We set here ν′ = 0.5 in all simulations. We
model the steering vectors by [s(θ)]k = exp(ıπk sin(θ)) as in a
uniform linear array of N elements with half wavelength inter-
element spacing. We take N = 10, n = 50, and pk = 1 for all
k. Under these conditions, ĈN satisfies [4, Assumption (E)], for
ν ≥ 2.5, implying that ĈN is well defined for each x1, . . . , xn and
not only for all large n a.s.

We first consider K = 1 with θ1 = 18◦. Figure 1, Figure 2,
and Figure 3 depict the mean-square error (MSE) performance
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Fig. 2. MSE performance of the various MUSIC estimators for
K = 1, Student-t noise with ν = 5, N = 10, and n = 50.
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Fig. 3. MSE performance of the various MUSIC estimators for
K = 1, Student-t noise with ν = 2.5, N = 10, and n = 50.

E[|γ(θ1) − γ̂(θ1)|2] of the above estimators, as a function of the
signal-to-noise ratio (SNR) σ−2. In Figure 1, we take wt Gaussian.
In Figure 2, wt has Student-t entries with ν = 5 degrees of
freedom (close-to-Gaussian scenario). Finally, in Figure 3, wt has
Student-t entries with ν = 2.5 degrees of freedom (impulsive
noise scenario). We naturally expect the robust techniques to bring
larger performance gains in the latter scenario than in the close-to-
Gaussian ones. The simulations are based on 50 000 Monte Carlo
simulations per SNR value. We first observe that both robust meth-
ods perform almost identically to their non-robust counterparts in a
Gaussian noise setting. In the close-to-Gaussian noise setting, the
robust approaches then overcome the non-robust ones, especially
in the low-to-medium SNR region where we see a significant
performance advantage for the robust G-MUSIC method against
G-MUSIC, while MUSIC and robust MUSIC perform similarly.
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Fig. 4. Resolution performance of the various MUSIC estimators,
θ1 = 10◦, θ2 = 15◦, Student-t noise with ν = 5, N = 10, and
n = 50.

In the far-from-Gaussian noise scenario, we then see both robust
methods show a large gain compared to the non-robust ones. In
this regime, the random matrix advantage of G-MUSIC versus
MUSIC disappears completely, while being largely favorable to
the robust scheme. The latter two results translate the fact that, if
the noise non-Gaussianity and the small sample size are not both
appropriately controlled, one of the two will overtake the other,
making G-MUSIC or robust MUSIC inefficient. On the contrary,
robust G-MUSIC, which controls both problems, always brings a
significant performance advantage.

In Figure 4, we depict the performance of resolution of two
close sources of the MUSIC estimators. For this, we take K = 2,
θ1 = 10◦, θ2 = 15◦, and ν = 5. The curves show the probability of
detecting exactly two local minima of γ̂ (or γ̂∞) within [5◦, 20◦],
based on 50 000 Monte Carlo simulations for each SNR value.
Note that again, in this close-to-Gaussian noise setting, the robust
G-MUSIC algorithm has a much stronger resolution power than
the G-MUSIC algorithm.

The robust G-MUSIC example is an illustrative application of
Theorem 1 demonstrating the strong advantage brought by a joint
robust and random matrix-based signal processing framework. The
theoretical performance gains are however not easy to obtain as
they would require the elaboration of central limit theorems (CLT),
currently under study.

IV. CONCLUSION
We have proved that a certain family of robust M-estimates

of population covariance matrices is consistent with the sample
covariance matrix, in the regime of both large population N and
sample n sizes. We applied this result to prove that a robust version
of the G-MUSIC estimator of Mestre is still an (N,n)-consistent
estimator of the direction of arrival in array processing. The sim-
ulation results then suggested that the induced robust G-estimator
performs better than the MUSIC and G-MUSIC estimators under
non-Gaussian noise and for N not small compared to n.
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