
COMPRESSED-SENSING GAME THEORY (CSGT): A NOVEL POLYNOMIAL
COMPLEXITY SOLUTION TO NASH EQUILIBRIA IN DYNAMICAL GAMES

Jing Huang∗, Liming Wang† and Dan Schonfeld∗

∗ Department of Electrical and Computer Engineering, University of Illinois at Chicago
†Department of Electrical and Computer Engineering, Duke University

ABSTRACT

Game-theoretic methods based on Nash equilibria have been
widely used in various fields including signal processing
and communication applications such as cognitive radio sys-
tems, sensor networks, defense networks and gene regulatory
networks. Solving the Nash equilibria, however, has been
proven to be a difficult problem, in general. It is therefore
desired to obtain efficient algorithms for solving the Nash
equilibria in various special cases. In this paper, we propose
a Compressed-Sensing Game Theory (CSGT) framework to
solve the Nash equilibria. We demonstrate that the proposed
CSGT framework provides a polynomial complexity solution
to the Nash Equilibria, thus allowing more general pay-off
functions for certain classes of two-player dynamic games.
We also provide numerical examples that demonstrate the
efficiency of proposed CSGT framework in solving the Nash
equilibria for two-player games in comparison to existing
algorithms.

Index Terms— Nash equilibria, compressed sensing, dy-
namic game.

1. INTRODUCTION

Game theory is a mathematical model describes and analyzes
scenarios with interactive decisions. In recent years, there has
been a growing interest in adopting cooperative and nonco-
operative game theoretic approaches to model many commu-
nications and networking problems, such as cognitive radio
systems, sensor networks, defense networks and gene regu-
latory networks [1, 2, 3]. Many of these applications employ
solution concepts such as correlated equilibria and Nash equi-
libria. Nash equilibria can capture decision balance among
all players at the expense of computation. Correlated equilib-
ria extends the Nash equilibria and are benign to solve. Al-
though widely used and computationally less expensive, the
correlated equilibrium could be too ”broad”. Furthermore,
the true correlations among the players could be neglected for
the solutions. Compared with correlated equilibria, the Nash
equilibria assume that agents act independently and have re-
ceived great attention in the signal processing and communi-
cation communities [2]. The existence of Nash equilibrium

requires essential use of Brouwer fixed point theorems [4]
and in general, any algorithm solving the fixed point prob-
lem would unconditionally require an exponential number of
function evaluations. The particular path following algorithm
developed by Lemke and Howson [5] was recently proven to
require, even in the best case for some instances, an expo-
nential number of steps [6]. The general problem for solving
Nash equilibria has been shown PPAD-complete [7], which
is currently lack of general efficient algorithm. Instead, re-
search attentions for efficient algorithm have been put on var-
ious special classes of the problem. For example, the problem
of computing a Nash equilibrium in a two-player zero-sum
game is solvable in polynomial time by Khachiyan’s ellipsoid
algorithm [8]. The problem with convex payoff functions can
be solved by convex optimization tools such as interior point
method [9]. However, it is still unknown whether we can have
efficient algorithm if we have situations other than those spe-
cial cases.

Compressed sensing is a signal processing technique for
efficiently acquiring and reconstructing a signal, by finding
solutions to under-determined linear systems. This takes ad-
vantage of the signal’s sparseness in some domain, allowing
the entire signal to be determined from relatively few mea-
surements. Donoho showed that the number of linear equa-
tions can be small and still contain nearly all the information
to reconstruct the signal [10].

In this paper, a Compressed-Sensing Game Theory (CSGT)
framework is proposed to solve Nash equilibria. The method
can be shown efficient for solving Nash equilibria for certain
class of problem. In section 2, we first provide the nec-
essary background of the compressed sensing theory. The
essentials of the compressed sensing theory is that it allows
the recovery of sparse solution to a under-determined linear
equations system. In section 3, we make connections of solv-
ing Nash equilibrium to compressed sensing theory by using
the fact that 2-player Nash equilibria reside in the vertexes
of polytope formed by correlated equilibria. In section 4,
we provide numerical examples to demonstrate the efficiency
of proposed CSGT framework in solving Nash equilibria in
2-player games. Finally, we provide a brief summary and
discussion of our results in section 5.
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2. COMPRESSED SENSING APPROACH TO
SOLUTION OF UNDER-DETERMINED SYSTEMS OF

LINEAR EQUATIONS

In this section, we provide a brief review of the idea behind
the compressed sensing theory. We use the term “signal”
to represent the solution data we are trying to acquire. Let
x ∈ Rn represent a signal and y ∈ Rm a vector of linear
measurements formed by taking inner products of x with a
set of linearly independent vectors ai ∈ Rn, i = 1, 2, ...,m.
In matrix format, the measurement vector is y = Ax, where
A ∈ Rm×n has rows aT

i , i = 1, 2, ...,m. When the number
of measurements m is equal to n, the process of recovering x
from the measurement vector y simply entails solving a linear
equations system. However, in many applications, one only
has very fewer measurements compared to a much larger di-
mension of space the signal x resides in, i.e., m � n. In that
case, the linear system Ax = y is typically under-determined,
permitting infinitely many solutions. In order to have a unique
solution, one need to apply various regulatory conditions.

In compressed sensing, one adds the constraint of sparsity,
allowing only solutions to have smallest number of nonzero
coefficients. Specifically, we are trying to solve the follow
optimization problem.

min{‖x‖0 : Ax = y}, (1)

where the quantity ‖x‖0 denotes the number of non-zeros en-
tries in x. (1) is a combinatorial optimization problem with a
prohibitive complexity if solved by enumeration, and thus is
not tractable. An alternative model is to replace (1) by (2) and
solve a computationally tractable convex optimization prob-
lem:

min{‖x‖1 : Ax = y}. (2)

Under favorable conditions the combinational problem (1)
and convex programming (2) share a common solution [11].
This equivalence result allows one to solve the L1 problem,
which is much easier than the original L0 problem.

In this paper, we will employ the compressed sensing the-
ory to solve the Nash equilibrium which can be formulated as
solutions of a under-determined system of linear equations.
More specifically, we use the basis pursuit model (2) for re-
covery represents a fundamental instance of compressed sens-
ing. Certainly not the only one, many other recovery methods
such as greedy-type algorithms are also available [12].

Theory of compressed sensing presently consists of two
components: recoverability and stability. Recoverability ad-
dresses the central questions: what types of measurement ma-
trices and recovery procedures ensure exact recovery of all k-
sparse signals and how many measurements are sufficient to
guarantee such a recovery? On the other hand, stability ad-
dresses the robustness issues in recovery when measurements

are noisy and/or sparsity is inexact. We first review an impor-
tant concept in compressed sensing.

Definition 1. A measurement matrix A satisfies the Restricted
Isometry Property (RIP) if the following inequality holds for
all i-sparse vector x, i ≤ m and ε ∈ (0, 1)

(1− ε)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + ε)‖x‖2 (3)

Recoverability is ensured if the matrix A ∈ Rm×n holds
RIP for certain pairs of (i, ε) [11].

Choosing a measurement matrix A with m < n that has
proper RIP ensures exact recovery of signal. In practice, it is
almost always the case that either measurements or the mea-
surement matrix is inexact, or both. The compressed sensing
stability studies the issues concerning how accurately a com-
pressed sensing approach can recover signals under these cir-
cumstances [13]. Stability results have been established for
(2) and its extension

min{‖x‖1 : ‖Ax− y‖2 ≤ r}. (4)

Most compressed sensing methods have been shown to
possess recoverability with known stability [12, 14].

3. COMPRESSED SENSING FRAMEWORK AND
NASH EQUILIBRIUM

Let (S, u) be a game with n players, where Si is the strategy
set for player i, S = S1 × S2... × Sn is the set of strategy
profiles and u is the payoff function for s ∈ S. Let si be a
strategy profile of player i and s−i be a strategy profile of all
players except for player i. When each player i ∈ {1, ..., n}
chooses their corresponding strategy si, which results in a
strategy profile s = (s1, ..., sn), then player i obtains his pay-
off ui(s). Note that the payoff of individual player depends
on the strategy profile chosen by all players.

Definition 2. A strategy vector s ∈ S is said to be a Nash
equilibrium if for all players i and each alternate strategy
s′i ∈ Si, we have that

ui(si, s−i) ≥ ui(s′i, s−i). (5)

In other words, no player i can change his chosen strategy
from si to s′i and thereby improve his payoff, assuming that
all other players stick to the strategies they have chosen in
s. The Nash equilibrium we have considered so far are called
pure strategy equilibrium. For the notion of mixed Nash equi-
librium, let us enhance the choices of players so each one can
pick a probability distribution over his set of possible strate-
gies; such a choice is called a mixed strategy.

A correlated equilibrium is a probability distribution over
strategy vector s [15]. Let p(s) denote the probability of strat-
egy vector s, where we also use the notation p(s) = p(si, s−i)
when talking about a player i.
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Definition 3. The distribution is a correlated equilibrium if
for all players i and all strategies si, s

′
i ∈ Si, we have the

inequality∑
s−i

p(si, s−i)ui(si, s−i) ≥
∑
s−i

p(si, s−i)ui(s′i, s−i). (6)

If player i receives a suggested strategy si, the expected
profit of the player cannot be increased by switching to a dif-
ferent strategy s′i ∈ Si. Nash equilibria are special cases
of correlated equilibria, where the distribution over S is the
product of independent distributions for each player. There-
fore Nash equilibrium is a special case of correlated equilib-
rium. More precisely, we have the following theorem reveal-
ing the relationship between correlated equilibria and Nash
equilibria in a 2-player game [16].

Theorem 1. In any non-degenerate 2-player game, the Nash
equilibria reside in vertices of the polytope formed by corre-
lated equilibria.

Notice that the boundaries of the a polytope are deter-
mined by a system of linear equations. While the vertices are
characterized as the solutions of various pairs of those linear
equations, or equivalently the sparse solution of the differ-
ences between those pairs. For example, in R2, if we have
boundaries defined by equations aT

1 x = 0 and aT
2 x = 0,

then a vertex v is a solution of the system Av = 0, where
AT = (a1, a2). Or equivalently, the solution of the opti-
mization problem min{‖aT

1 v − aT
2 v‖0 : ‖Av‖2 ≤ r}, where

0 < r � 1. We then can solve the optimization problem
using the compressed sensing theory.

Given all the payoff functions of the 2-player mixing
game, we can use the same idea to solve all the vertices of
the polytope formed by solution sets of correlated equilibria.
By Theorem 1, at least one of the vertices is the Nash equi-
librium. We point out the major difference of our method
to directly solving system of linear equations is that the lat-
ter case requires solving the equations for combinatorically
many times since the vertices could be formed by combina-
torically many boundaries. While our method only need to
perform a joint convex optimization, although at the expense
of combinatorically many storage requirement.

We have the following theorem to characterize the usabil-
ity of our method for solving the Nash equilibria.

Theorem 2. Assume the payoff matrix A ∈ Rm×n satisfies
the (n−1,

√
2−1)−RIP condition, the compressed sensing

based method will find the exact Nash equilibria.

In practice, commonly one is not able to have a precise
description of the payoff matrix A. Instead, A is a random
matrix per se. We can model the uncertainty in the payoff
as a Gaussian random matrix, which results A as a Gaussian
random matrix. We have the following theorem for the case
where A is a Gaussian matrix.

Theorem 3. Given a Gaussian payoff matrix A ∈ Rm×n, if
with probability at least 1 − δ, the matrix 1√

m
A satisfies the

(i, ε)−RIP property provided

m ≥ Ci

ε
log

( n

ε2i

)
, (7)

where i ≥ 1, ε ∈ (0, 1/2) and δ ∈ (0, 1). C is a constant
which only depends on δ. Then with probability p where p ∼
O(e1−δ), the compressed sensing based method will solve the
exact Nash equilibria.

4. EXPERIMENTAL RESULTS

Compressed-Sensing Game Theory (CSGT) framework serves
as an efficient way to solve Nash equilibria for certain classed
of 2-player games. Therefore, one of the advantages of
CSGT is that it is computationally less expensive than is
Lemke-Howson algorithm [17]. To evaluate the performance
of our CSGT, we ran several sets of experiments. In the first
set of experiments, we compared the performance of CSGT to
that of Lemke-Howson algorithm [17] on two 2-play games
including battle of the sexes and prisoner’s dilemma.

In battle of the sexes game, the husband would most of
all like to go to the football game, while their wife would
like to go to the opera. Both would prefer to go to the same
place rather than different ones. The payoff matrix in Table
1 shows an example of battle of the sexes game, where the
wife chooses row and the husband chooses a column. In each
cell, the first number represents the payoff to the wife and the
second number represents the payoff to the husband.

Table 1. The payoff matrix of battle of the sexes game
Opera Football

Opera 3, 1 0, 0
Football 0, 0 1, 3

Both CSGT and Lemke-Howson algorithm [17] were ex-
ecuted on this two-player game for 100 times. As can be seen
from Fig. 1, the Nash equilibria (blue) are vertices of the cor-
related equilibria. It it also shown that our compressed sens-
ing framework find the Nash equilibrium (0.75, 0.75) first.
Table 2 compares the average computational time and the first
Nash equilibrium solution found by these two methods. The
table 2 demonstrates that CSGT solves the game far more
quickly than Lemke-Howson.

In prisoner’s dilemma game, each player chooses to either
”cooperate” or ”defect”. The payoff matrix in Table 3 shows
an example of prisoner’s dilemma game, where the player 1
chooses row and the player 2 chooses a column. In each cell,
the first number represents the payoff to the player 1 and the
second number represents the payoff to the player 2. The ma-
trix implies that the ”both cooperate” outcome is better than
the ”both defect” outcome.
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Fig. 1. battle of the sexes game

Table 2. Statistical performance for battle of the sexes game.
Method NE CPU time
CSGT (0.75, 0.75) 0.031

Lemke-Howson (0.75, 0.75) 1.16

Both CSGT and Lemke-Howson algorithm [17] were ex-
ecuted on this two-player game for 100 times. Table 4 com-
pares the average computational time and the first Nash equi-
librium solution found by these two methods. The table 4
demonstrates that CSGT solves the game far more quickly
than Lemke-Howson.

5. CONCLUSION

In this paper, a Compressed-Sensing Game Theory (CSGT)
framework is proposed to solve the Nash equilibria for two-
player dynamic games. It is demonstrated that the CSGT
framework provides a polynomial complexity solution to the
Nash Equilibria for certain classes of problem. It has also
been demonstrated that the proposed CSGT framework can be
used to solve the Nash equilibria with known recoverability
and stability. A characterization of the efficiency of the pro-
posed solution to the Nash Equilibria has been demonstrated
theoretically. Numerical examples are also used to demon-
strate the efficiency of proposed CSGT framework in solving
the Nash equilibria for certain classes of two-player games
in comparison to existing algorithms. In the future, we plan
to extend the proposed CSGT framework for the solution of
the Nash Equilibria in multi-player dynamic games. We also
plan to extend the proposed framework for the efficient so-
lution of the Correlated Equilibria [15, 18] as well as Factor
Graph-Based Structural Equilibria [19]

Table 3. The payoff matrix of battle of the sexes game.
Cooperate Defect

Cooperate 4, 4 5, 1
Defect 1, 5 0, 0

Table 4. Statistical performance for prisoner’s dilemma
game.

Method NE CPU time
CSGT (2.5, 2.5) 0.016

Lemke-Howson (2.5, 2.5) 0.13
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