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ABSTRACT

In this work we are interested in the problem of reconstructing
time-varying signals for which the support is assumed to be
sparse. For a single time instance it is possible to reconstruct
the original signal efficiently by employing a suitable algo-
rithm for sparse signal recovery, given the sparsity level of the
signal. In the case of time-varying sparse signals the sparsity
level is not necessarily known a-priori. Furthermore conven-
tional tracking by Kalman filtering fails to promote sparsity.
Instead, a hierarchical Bayesian model is used in the tracking
process which succeeds in modelling sparsity. One theorem is
provided that extends previous work by providing some more
general results. A second theorem gives the conditions under
which all sparse signals are recovered exactly. It is demon-
strated that the proposed method succeeds in recovering time-
varying sparse signals with greater accuracy than the classic
Kalman filter approach.

Index Terms— Hierarchical Bayesian network, Kalman
filter, time-varying sparse signals

1. INTRODUCTION

In this work we consider the problem of reconstructing time
varying signals that are assumed to be sparse. In the case
where temporal measurements are taken then the problem of
tracking dynamic sparse signals cannot be solved with clas-
sic approaches since the underlying models do not promote
sparse signals. In the last decade the field of sparse signal
representation and reconstruction has gained a lot of interest
in many fields mostly because many signals of interest can be
sparsely represented in some basis. In many cases not only do
we have to deal with sparse signals but a time-series of sparse
signals which we seek to track. Examples can be found in
many applications such as computer vision where tracking a
set of features needs to take place, data fusion from vast wire-
less sensor networks and many more.
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For a single time instance, the problem of sparse signal
reconstruction has been addressed extensively with research
in the field of compressed sensing. In [1] a specific type of a
Bayesian network was introduced which elegantly promotes
sparsity. This learning framework namely the Relevance Vec-
tor Machine (RVM) results in highly sparse models for the
input and has gained popularity in the signal processing com-
munity for it’s use in compressed sensing applications [2] and
basis selection [3]. Sparsity is rendered possible with a hi-
erarchy of prior distributions which intuitively confines the
space of all possible states. The key fact behind this tech-
nique is that it provides estimates on full distributions. Non-
Bayesian sparse recovery algorithms do not take into account
the signal’s statistics making their use in tracking sparse sig-
nals difficult. The resulting statistical information can be used
to make predictions for future states without the risk of them
not being sparse. In addition there is no need for a prede-
termined level of sparsity since the number of active compo-
nents is automatically inferred. This makes the method even
more appealing for use in an on-line tracking algorithm. Sub-
sequent work in [4, 5] has shown that the properties of this
model also allow for efficient implementation.

For dynamic signals the system’s state can be tracked by
the Kalman filter with great accuracy. Unfortunately this ap-
proach is not fit for sparse signals. The Kalman filter requires
that the mean value of the predicted states to be equal with
the mean value of the actual state while minimising variation.
Bearing this in mind the original principle must be extended.
By examining the formulation of this estimator it becomes ev-
ident that the model must be revisited. Previous work in [6, 7]
employs a modified Kalman filter which does not take into ac-
count a sparse model and also requires to specify a number of
sensitive external parameters.

The Bayesian network of the RVM is employed to extend
the data model adopted in traditional tracking so as to admit
sparse solutions. The automatic determination of the active
components solves the problem of having to assume fixed
sparsity levels. This is of great importance since in a real-
time tracking scenario the sparsity level constantly changes.
The resulting statistical information is then incorporated into
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updating predictions and thus making sparse state estimates.
One theorem is presented which extends previous work in [3]
by providing some more general results on the associated cost
function. A second theorem shows that under certain condi-
tions all sparse signals can be recovered exactly. Simulations
show that the proposed method achieves lower reconstruction
error than the classic Kalman filter approach.

In the next section we briefly mention the basic proper-
ties of the Kalman filter. Also the key properties of sparse
Bayesian learning introduced in [1] are outlined. A discus-
sion is made regarding previous work and the main differ-
ences with ours. In Section 3 the connection to the initial
problem is highlighted and the revised prediction and update
steps are given along with the two theorems. Finally sim-
ulation results on a toy problem in Section 4 highlight the
performance of this amalgamation.

2. PRELIMINARIES

The system model on which this work is based is described
by the following two equations:

T = Tr-1+ qt, (1)
Y = Prxy + 1y ()

Vectors x;,y; denote the system’s state and measurements
respectively. The state’s innovation is modelled by process g,
and measurement noise by n;. In this work and without loss
of generality we also assume that ; € R"” is s-sparse and
design matrix ®, € R™*".

In this section the main aspects of Kalman filtering and
sparse Bayesian learning (SBL) are briefly presented. The
classic state-space model in Equations (1) and (2) assumes
Gaussian distributions on the model parameters and thus is
inappropriate for sparse signals. On the other hand SBL
achieves to promote sparsity for a single time-instance of
Equation (2). In Section 3 the connection between the two is
presented.

2.1. The Kalman filter and the related approaches

The most popular technique used for tracking a dynamic sig-
nal is the Kalman filter. It is based on the Gaussian assump-
tion, that is: p(xi|zi—1) = N(xi—1,Q:) and p (y¢|z:) =
N (®xy,0%I) while p(q;) = N(0,Q) and p(n;) =
N (0,0%I). To track the statistics of a dynamic signal it
is sufficient iterate a two step procedure: the Kalman filter
prediction and update steps. The prediction step calculates
the parameters of p(x;|y;—1) while the update step evaluates
those of p(at|y:). It can be shown that both distribution
functions are Gaussian. As a result, not only one can obtain
the globally optimal estimate of x; in terms of mean squared
error (MSE), but also track the full distribution exactly. How-
ever, and as can be easily verified, the optimal estimate of the

standard Kalman filter is typically not sparse. Model modifi-
cations must be done for tracking dynamic sparse signals.

There are several approaches in which the Kalman filter
framework is adopted but slightly modified to admit sparse
solutions. The essential idea behind [6] and [7] is to apply
thresholds that enforce sparsity. Work in [8] adopts a proba-
bilistic model but signal amplitudes and support are estimated
separately. Techniques presented in [9] use prior sparsity
knowledge into the tracking process. All these approaches
typically require a number of parameters to be pre-set. It also
remains unclear how these methods perform towards model
and parameter mismatch.

2.2. RVM for sparse signal reconstruction

For a more elaborate analysis the interested reader can refer
to [1, 5]. The following discussion refers to Equation (2) for
just one time instance. Note that time index ¢ is temporarily
dropped.

SBL was proposed in [2] to solve the problem of sparse
signal reconstruction. It was underscored in subsection 2.1
that if ¢ ~ AN (0, Q) where Q is full rank, then the mini-
mum MSE solution to Equation (2) provided by the Kalman
optimal estimator is typically not sparse. In SBL this issue
is addressed by introducing individual hyper-parameters c to
control the variance of each component x;:

p(@la) = J[JNV (0,07") =N (0,47")

where matrix A = diag([ay, -+ ,a,](). Driving a; =
+ooresults in p (z;|a;) = N (0,0) which means it is a-
posteriori certain that x; = 0. Hence, the reconstruction

problem is then changed to finding the maximum likelihood
solution of « for the given measurements y. The explicit
form of the likelihood p (y\a, 02) was derived in [1]. A set
of fast algorithms to estimate o and hence x are proposed in
[5]. Even though the algorithms in [5] are not guaranteed to
produce globally optimal solutions, they perform extremely
well for many practical scenarios.

At this point we recognise the elegance of this method.
There are no control parameters to be manually set, like a pre-
determined level of sparsity. A stopping criterion is needed
for the optimisation process and this can be set to some safe
threshold so as to not affect the validity of the process. This
is of great importance for our method since the sparsity level
of x; is unknown and varying. Furthermore, the unknown
state vector  is Gaussian distributed (conditioned on a given
). This allows us to incorporate the SBL framework into the
Kalman filter.

3. HIERARCHICAL BAYESIAN KALMAN FILTER

For the purpose of tracking dynamic sparse signals, the prin-
ciples behind the Kalman filter and SBL are combined. In
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particular, Equations (1) and (2) are still used to model the
dynamic system. The measurement noise is assumed to be
Gaussian with known covariance, i.e. n ~ N (0,02I). Dif-
ferently from the standard Kalman filter where the state in-
novation gq; is Gaussian with a given covariance matrix Q,
we assume that g, ~ N (0, A; ') where A, = diag (o) =
diag ([a1, - - , ap],) and hyper-parameters «; are not priorly
known and will have to be learned from the observation vector
Y.

Similar to the standard Kalman filter the two steps of pre-
diction and update still need to be performed at each time
instance. In the prediction step, one has:

Btji—1 = Bi—1, Sqp—1 = Sp1 + A7
Yijt—1 = ‘I’tﬂt\tqa Yet = Yt — Yijt—1- 3)

where the notation ¢t — 1 means prediction at time instance
t for measurements up to time instance ¢ — 1. In the update
step, one computes:

Moje = Myje—1 + KiYe s, D = (I — K@)
K, =3, 1®] (0’ T+ ®,3,_,®]) "

In addition to these steps is the additional step of learning
the hyper-parameters a;. From Equation (3), yc,: = ®:q; +
n,; where a sparse g, is preferred to produce a sparse x;. As
per the analysis in [1, 5], maximising the likelihood p(y;|a)
is equivalent to minimising the following cost function:

L(oy) =log|Za| + y5 23 ye s, )

where B, = 02T+ ®; A; ' ®7. The algorithms described in
[5] can be applied to estimate ;. Note that the cost function
L(ex) is not convex. The obtained estimate «; is generally
sub-optimal (details on the estimation of the globally optimal
oy are given in Section 3.1.) Nevertheless, this sub-optimal
solution is proved to be very useful in practice.

The proposed HB-Kalman has several advantages. Firstly,
by adopting the system model described in Equations (1) and
(2), one can track the mean and covariance of the state vector
;. Secondly, the employment of hyper-parameters to model
state innovation promotes sparsity. Thirdly, different from
previous work in [6, 7, 8, 9], the proposed model only in-
volves one parameter o2 that needs to be manually adjusted.
In principle, this parameter can also be learned from the mea-
surements y; [1]. In our model, we let o2 be priorly known
since this is the case with most real-world applications (most
commercial sensors have to label their noise floor). Finally, as
we shall show in Section 3.1, the proposed model allows cer-
tain performance guarantees (global optimality under certain
conditions).

3.1. Performance Guarantees

This subsection discusses the performance guarantees of
RVM at a given time instant. For convenience, the subscript ¢

is dropped and we focus on the model specified in Equation
(2) where © ~ N (0, A™"'). In the literature the RVM was
analysed in [3]. It had been proven that a maximally sparse
solution of y = P« attains the global minimum of the cost
function. However, the analysis did not specify the conditions
to avoid local minima. By contrast, we provide more refined
analysis and derive the conditions under which the original
RVM algorithm [5] converges to the global minimum. Due
to space constraints, only the main results are presented and
all detailed proofs are delayed to the journal version of this
paper.

In the performance analysis, we follow [3] by driving
noise variance 2 — 0, which corresponds to the noiseless
setting. The following Theorem specifies the behaviour of
the cost function £ ().

Theorem 1. For any given o, define the set T = {1 < i <
n: 0 < a; < oo}. Then it holds that

2
lim 0L (a) = Hy - <I>I<I>;yH : 5)
020 2

where ®7 is a sub-matrix of ® formed by the columns indexed
by 7, and ‘IDTI denotes the pseudo-inverse of ®. Furthermore,
if |IZ| < m and y € span (®z), then L (o) — —oo and
oL (a) = 0as o? — 0.

Two observations can be obtained. Firstly, the scenar-
ios analysed in [3] are special cases of Theorem 1 where
L (&) — —o0. Secondly, a proper scaling of the cost function
gives the squared ¢5-norm of the reconstruction error. Recon-
struction is then equivalent to recovering a support set that
minimises the reconstruction distortion. Note that this princi-
ple is exactly the one behind many greedy algorithms includ-
ing OMP [10] and subspace pursuit [11]. Theorem 1 suggests
certain connections between SBL and greedy algorithms.

The connection becomes more clear when studying the
RVM inference algorithms in [5]. Let us consider the case
that 02 = 0. It can be shown (details are given in the journal
version of this paper) that one of the sequential algorithms
in [5] closely resembles the OMP technique for standard CS
reconstruction [10]. As a consequence, a global performance
guarantee, similar to the one in [10], can be obtained (see
Theorem 2 below). To the authors’ knowledge, this is the first
result to prove the global performance guarantee for the RVM
inference algorithm.

Theorem 2. Assume the noiseless setting y = ®x where the
columns of ® € R™*" are normalised, i.e. T ¢; = 1 for all
1 < i < n. Suppose that the matrix ® satisfies the incoher-
ence condition that ’¢iT¢j| < 0.375/sforalll <i#j<n.
Then the sequential algorithm to solve the RVM inference
problem [5] reconstructs all s-sparse signals exactly.

The form of the cost function in (5) also suggests that it
is possible to design inference techniques based on advanced
CS reconstruction algorithms. The detailed algorithm design

6548



= HB-Kalman
Kalman filter
——BCS

0 50 100 150 200
Time

(a) Number of measurements m = 100

MSE

= HB-Kalman
Kalman filter
—=—BCS

0 50 100 150 200
Time

(b) Number of measurements m = 6.

Fig. 1: Tracking performance comparison.

and the corresponding performance guarantees are discussed
in the journal version of this paper.

4. EMPIRICAL RESULTS

In this section a comparison is made between the original
Kalman filter and the proposed method namely Hierarchical
Bayesian Kalman filter (HB-Kalman). The stand-alone im-
plementation of Bayesian compressed sensing (BCS) as pre-
sented in [2] is also tested in order to assess the quality of
reconstruction when conditioning on past estimates.

A toy problem is constructed in order to obtain recon-
struction results. Sparse signal &; € R™ is chosen to be sparse
in it’s natural basis. The indices ¢ of the non-zero entries are
chosen uniformly from [1, n] where the n is the dimensional-
ity of a; and is chosen to be n = 512. It is also assumed that
qi ~N(0,02) V z; # 0 with o7 = 0.1.

The simulation time for this experiment is 7' = 200 time
instances. At two arbitrarily chosen time instances ¢ = 50 and
t = 150 a change in the support of x; is introduced. A non-
zero component is added to the support of 59 and a non-zero
component is removed from the support of x159. The indices
of the elements to be added and removed are also chosen at
random. Apart from these two time instances the support of
x; remains stationary. At ¢ = 1 the support is initialised with
5 non-zero components. Noise variance is set to o2 = 0.01
for the entire simulation time.

Two scenarios are considered. In the first scenario noisy
measurements y; are then taken by choosing the design ma-
trix ®; € R100%512 35 described in Section 2.1 which is re-
sampled at each time instance. The number of measurements
at each time instance remains constant. In Figure 1(a) the
mean squared reconstruction error is plotted against time for

each of the three reconstruction methods for the first scenario.
It is evident that the error levels are much lower for the HB-
Kalman filter when compared to the conventional Kalman fil-
ter, direct consequence of the assumed sparse model. By com-
paring to the repeated application of the BCS method, i.e as-
suming independent, identically distributed data, we see that
incorporating statistical information from previous estimates
results in lower reconstruction error.

In the second scenario we assume that the initial state of
the system zq is known a-priori while the number of mea-
surements taken at each time instance now reduces to m =
6 < 2 x 5. This represents a difficult case since the number of
measurements is less than twice the number of non-zero com-
ponents which is 5 and tests the robustness of the proposed
method. By observing Figure 1(b) we see that HB-Kalman
still performs optimally compared to the other two methods.
It is shown that given statistical information from an earlier
time instance the proposed method manages to retain it’s per-
formance. We also notice that error peaks have become more
abrupt in the case of the Kalman filter compared to the first
test scenario. The HB-Kalman approach manages to recover
the correct support set in all cases.

5. CONCLUSION

We proposed a method for tracking dynamic sparse signals; a
problem which can not be solved with traditional approaches
like the Kalman filter. The theoretical part shows that certain
connections exist with well known compressed sensing algo-
rithms and that is is possible to incorporate previous knowl-
edge in the tracking process. The technique is tested against
some synthetic scenarios and is empirically shown to achieve
better performance than traditional methods.
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