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ABSTRACT

The idea of backtracking has been incorporated into the matching
pursuit algorithms in sparse recovery, for example, subspace pursuit
(SP) and compressive sampling matching pursuit (CoSaMP), to im-
prove the recovery performance. In each iteration, a supplement set
of size K or 2K is added to the candidate set to re-evaluate their
reliability and then discard the unreliable indices, where K is the s-
parsity level of the original sparse signal. Yet the optimal choice of
the size of the supplement set is still unclear. This paper aims to pro-
vide comprehensive analysis on the optimal choice of the size. The
optimality is twofold: performance guarantees and computational
complexity. By two theorems,we provide theoretical guarantees for
the supplement set of arbitrary size, and computational complexity
needed for perfect recovery. Numerical simulations demonstrate that
a moderate size, such as 0.25K, results in computational efficiency
without loss of recovery quality.

Index Terms— Sparse recovery, backtracking matching pursuit,
size of supplement set, restricted isometry property, computational
complexity.

1. INTRODUCTION

Finding the sparsest solution to the under-determined equation,

y = Ax, (1)

is an essential issue in many fields of signal processing, especial-
ly in compressive sampling (CS) over the past decades [1–3]. In
(1), A ∈ RM×N is a sensing matrix with more columns than rows,
y ∈ RM is a measurement vector, and x ∈ RN is a K-sparse vector
to be recovered, which means onlyK out of itsN entries are nonze-
ro. Directly finding the sparest solution to (1) is NP-hard, which is
not practical when facing large scale problems. This leads to one of
the major aspects of CS theory—designing effective recovery algo-
rithms with fine recovery performance and low computational com-
plexity.

Plentiful algorithms have been proposed to derive the sparse so-
lution to (1). A family of convex relaxation algorithms [4] had been
introduced before the theory of CS was established. Based on lin-
ear programming (LP) techniques, it is demonstrated that l1 norm
optimization problem yields an identical solution to the l0 norm op-
timization problem, provided that A satisfies the restricted isometry
property (RIP) with a constant parameter [5–7]. The computation-
al complexity of LP algorithms based on interior point methods is
O(M2N3/2) [8], which is still high for large signal dimension N .
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Another family of iterative greedy algorithms has received much
attention due to their simple implementation and low computational
complexity. The basic idea underlying these algorithms is to itera-
tively estimate the support set of the original sparse signal. In each
iteration, one or more indices are added to the support estimation by
correlating the columns of A with the residual vector. Typical exam-
ples include orthogonal matching pursuit (OMP) [9,10], regularized
OMP (ROMP) [11, 12], and stage-wise OMP (StOMP) [13]. Com-
pared with convex relaxation algorithms, matching pursuits need
more number of measurements, but they tend to be more compu-
tationally efficient. The total computational complexity of matching
pursuits is approximately O(KMN).

1.1. Related Works

Recently, several greedy pursuits including subspace pursuit (SP)
[14] and compressive sampling matching pursuit (CoSaMP) [15]
have been proposed by incorporating the idea of backtracking. With
the prior information of sparsity level K, they iteratively refine the
candidate support set by adding a supplement set of fixed size and
discarding the unreliable candidates. The size of the supplement set
of SP is K, while that of CoSaMP is 2K. By re-evaluating the relia-
bility of all candidates in each iteration, these algorithms can provide
comparable performance to convex relaxation algorithms, and exhib-
it low computational complexity as matching pursuit algorithms.

Based on SP and CoSaMP, several algorithms have been pro-
posed to further improve the recovery performance. A fast version
of SP is developed in [16] at the expense of accuracy loss. Sparsi-
ty adaptive matching pursuit (SAMP) [17] and its fast version [18]
iteratively estimate the sparsity level and adopt the SP strategy for s-
parse recovery. In [19], a sparsity-constrained minimization problem
is introduced and an algorithm inspired by CoSaMP is proposed. It is
clarified that optimally tuned SP dominates optimally tuned CoSaM-
P [20], yet the optimal size of the supplement set is still unavailable,
which is the main motivation of this paper. In [21], the size of the
supplement set varies dynamically and the criterion of selecting in-
dices is improved, but it lacks theoretical performance guarantees.

This paper aims to provide comprehensive analysis on the opti-
mal choice of the size of the supplement set. The SP algorithm is
modified to the situation where the size of the supplement set is an
arbitrary numberL. We term this class of algorithms as backtracking
matching pursuit (BMP). It is proved that the recovery performance
is guaranteed as long as the sensing matrix A satisfies the RIP of
order 2K + L with a constant parameter. Furthermore, the anal-
ysis of computational complexity suggests a moderate L would be
more suitable for sparse recovery in practice. Notice that the theo-
retical analysis is also applicable to other sparse recovery algorithms
based on backtracking, such as SAMP [17] and GraSP [19], and
helps to improve their performance. Numerical simulations reveal
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Table 1. The Procedure of Backtracking Matching Pursuit

Input: A, y, K, L;
Initialization: l = 0, T 0 = maxind{ATy,K},

y0
r = resid(y,AT0);

Output: T l, solution x̂T l = A†
T ly, x̂{1,...,N}\T l = 0.

Repeat:
l = l + 1;

Adding supplement set:
T̃ l = T l−1 ∪maxind{ATyl−1

r , L};
Updating candidate set:

T l = maxind{A†
T̃ ly,K};

Updating residual vector:
ylr = resid(y,AT l);

Until: Stop criterion satisfied;

that a moderate size of supplement set, such as 0.25K, results in
computational efficiency without loss of recovery quality.

2. BACKTRACKING MATCHING PURSUIT

For better understanding of the description of backtracking matching
pursuit (BMP), we adopt the notations in [14] about projection and
its residual vector. Let AI and xI denote the submatrix formed by
columns of A and subvector composed of elements of x indexed
by the set I , respectively. span(AI) denotes the subspace spanned
by the columns of AI . Suppose that AT

I AI is invertible, then the
projection of y onto span (AI) is defined as

yp = proj (y,AI) = AIA
†
Iy, (2)

where A†I =
(
AT
I AI

)−1
AT
I denotes the pseudo-inverse of matrix

AI . The residual vector of the projection equals

yr = resid (y,AI) = y − yp. (3)

Define maxind{x,K} as the set composed of the indices of K
largest magnitude entries of x. Let I \ J denote the set consisting of
elements in the set I but not in the set J .

The procedure of BMP is demonstrated in Table 1. In each it-
eration, BMP generates a supplement set of size L, and adds to the
candidate set. Then the most reliable K indices is selected out of
these K + L ones. This algorithm is a direct generalization of the
SP algorithm [14] by setting the size of the supplement set to arbi-
trary size. If L = K, BMP is identical to SP. The stop criterion of
BMP is when the candidate set remains the same as the last one, or
the number of iterations reaches the bound Q. It is easy to check
that if the candidate set remains the same, it won’t change in the se-
quential iterations. In addition, once the support set is successfully
recovered, it will remain the same as well.

The candidate set, the supplement set and several other relevant
notations are exhibited in Fig. 1 for a visualization. Let T and |T |
denote the exact support set of x and the cardinality of T , respec-
tively. Define T∆ as the supplement set, then

T∆ ∩ T l−1 = ∅, T∆ ∪ T l−1 = T̃ l. (4)

T l-1T

TΔ

T lT T̃ l

(a) (b)

Fig. 1. The relationship of (a) T , T l−1 and T∆, as well as (b) T , T̃ l

and T l.

The new candidate set satisfies T l ⊂ T̃ l. By the means of re-
evaluating, more indices of T are contained in the candidate set T l

than those in the previous iteration.
It needs to be emphasized that the main contribution of this pa-

per is not the derivation of the BMP algorithm, but the analysis on
the optimal choice of the size of supplement set. The optimality is t-
wofold: performance guarantees and computational complexity, and
they are demonstrated in Section 3 and Section 4, respectively.

3. PERFORMANCE GUARANTEES

In this section, the theoretical recovery performance guarantees of
BMP are provided. Define δK to be the K-restricted isometry con-
stant (RIC) as in [6], and let δ∗ = δ2K+L for short. The following
theorem demonstrates the main result.

Theorem 1. Define ρ = K/L. The set of undetected indices of the
support set in the l-th iteration, i.e. T \ T l, satisfies

‖xT\T l‖2 ≤ C‖xT\T l−1‖2, (5)

where

C =


(1 +

√
ρ) δ∗(1 + δ∗)

(1− δ∗)3
0 < ρ ≤ 1;

1 + δ∗

1− δ∗
√
ρ− 1
ρ + 8δ∗

(1− δ∗)4
ρ > 1.

(6)

Furthermore, if (2K + L)-RIC of matrix A satisfies

0 < δ∗ ≤


1

ρ+ 4 0 < ρ ≤ 1;

1
12ρ+ 4 ρ > 1,

(7)

then the constant C is less than 1, which implies that the original
sparse signal is guaranteed to be recovered in finite iterations.

Proof. For each scenario, the proof of (5) mainly consists of two
parts. First, by adding the supplement set T∆ to the candidate set
T l−1 to construct T̃ l, the undetected energy ‖xT\T̃ l‖2 is much re-
duced compared to ‖xT\T l−1‖2. Second, after discarding the unre-
liable indices, the undetected energy ‖xT\T l‖2 will not increase too
much compared to ‖xT\T̃ l‖2. Refer to Fig. 1 to comprehend the big
picture of the proof.

As for the first part of the proof of (5), we first prove that if
T̂ ⊂ T \ T̃ l and |T̂ | = α|T∆ \ T |, it holds that

‖xT̂ ‖2 ≤
(
1 +
√
α
)
δ∗

(1− δ∗)2
‖xT\T l−1‖2. (8)
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And if |T̂ | = α|T∆ ∩ T |, it holds that

‖xT̂ ‖2 ≤
√
α
1 + δ∗

1− δ∗
‖xT∆∩T ‖2 +

(
1 +
√
α
)
δ∗

(1− δ∗)2
‖xT\T l−1‖2.

(9)

We establish the inequality (9) since for small L, |T∆ \ T | may be
rather small or even zero, and (8) is not sufficient for the proof of
this scenario.

According to the proof of Theorem 3 in [14], the residual vector
can be written as

yl−1
r = AT∪T l−1x

l−1
r , (10)

where xl−1
r satisfies

‖xl−1
r ‖2 ≤

1

1− δ2K
‖xT\T l−1‖2. (11)

Since T∆ is the indices of L largest magnitude entries in ATyl−1
r

and |T̂ | = α|T∆ \ T |, it holds that

‖AT
T̂y

l−1
r ‖2 ≤

√
α‖AT

T∆\Ty
l−1
r ‖2. (12)

On one hand, applying Lemma 1 in [14] and according to (10),

‖AT
T∆\Ty

l−1
r ‖2 ≤ δ2K+L‖xl−1

r ‖2. (13)

On the other hand, (10) and triangle inequality implies

‖AT
T̂y

l−1
r ‖2

≥‖AT
T̂AT̂xT̂ ‖2 − ‖A

T
T̂AT∪T l−1\T̂

(
xl−1
r

)
T∪T l−1\T̂ ‖2

≥ (1− δK) ‖xT̂ ‖2 − δ2K‖x
l−1
r ‖2. (14)

Substituting (13) and (14) into (12), and together with (11), the in-
equality (8) can be derived.

According to the definition of T∆ and |T̂ | = α|T∆ ∩ T |,

‖AT
T̂y

l−1
r ‖2 ≤

√
α‖AT

T∆∩Ty
l−1
r ‖2. (15)

On one hand, similar to the proof of (14),

‖AT
T∆∩Ty

l−1
r ‖2 ≤ (1 + δK) ‖xT∆∩T ‖2 + δ2K‖xl−1

r ‖2. (16)

Substituting (16) and (14) into (15), and according to (11), the in-
equality (9) can be derived.

Now turn to the the first part of the proof of (5). Consider the
scenario of L ≥ K, which means 0 < ρ ≤ 1. It is easy to check
that |T \ T̃ l| ≤ ρ|T∆ \ T |, thus (8) implies

‖xT\T̃ l‖2 ≤
(1 +

√
ρ) δ∗

(1− δ∗)2 ‖xT\T l−1‖2, (17)

which means the undetected energy ‖xT\T̃ l‖2 is upper bounded by
‖xT\T l−1‖2.

For the scenario of L < K which means ρ > 1, since |T \T̃ l| ≤
K − |T∆ ∩ T |, there exist T1 and T2 such that T1 ∪ T2 = T \ T̃ l,
T1 ∩ T2 = ∅, and |T1| ≤ K − ρ|T∆ ∩ T | = ρ|T∆ \ T |, |T2| ≤
(ρ− 1)|T∆ ∩ T |. According to (8), it can be derived that

‖xT1‖2 ≤
(1 +

√
ρ) δ∗

(1− δ∗)2 ‖xT\T l−1‖2, (18)

while (9) implies that

‖xT2‖2 ≤
√
ρ− 1

1 + δ∗

1− δ∗
‖xT∆∩T ‖2 +

(1 +
√
ρ− 1)δ∗

(1− δ∗)2
‖xT\T l−1‖2.

(19)

It is easy to check that

‖xT\T̃ l‖22 =‖xT1‖
2
2 + ‖xT2‖

2
2 (20)

‖xT∆∩T ‖
2
2 =‖xT\T l−1‖22 − ‖xT\T̃ l‖22. (21)

Substituting (18) and (19) into (20), and together with (21), it can be
derived that

‖xT\T̃ l‖2 <

√
ρ− 1

ρ
+

8δ∗

(1− δ∗)4 ‖xT\T l−1‖2, (22)

which also reveals that ‖xT\T̃ l‖2 is upper bounded.
Now turn to the the second part of the proof of (5). For both

scenarios, it holds that

‖xT\T l‖2 ≤
1 + δ∗

1− δ∗
‖xT\T̃ l‖2. (23)

The proof of (23) is much the same as the proof of Theorem 4 in [14],
except for that |T̃ l \ T l| = L. Thus we omit the detailed proof. (23)
reveals that ‖xT\T l‖2 may be slightly larger than ‖xT\T̃ l‖2.

Combining (17) and (22) with (23), the inequality (5) can be
derived. In addition, it is easy to check that if (7) is satisfied, then
C < 1, which means that the undetected energy ‖xT\T l‖2 can be
arbitrary small. If at least one element of the support set is unde-
tected, ‖xT\T l‖2 will always be larger than the smallest magnitude
nonzero entry of x, which leads contradiction. Thus the support set
will be exactly recovered, and the sparse signal will be as well.

Theorem 1 reveals that for arbitrary L, the recovered signal is
identical to the original sparse one as long as A satisfies the RIP of
order 2K +L with a constant parameter. For constant ρ, set the size
of the supplement set L = ρ−1K, and the requirement of the RIC,
δ(2+ρ−1)K , is a constant independent of the sparsityK. For the case
of ρ = 1, which is exactly the scenario of the SP algorithm, the
constant C in Theorem 1 is identical to that of Theorem 2 in [14].
Notice that when L = 2K, the demand of δ4K in BMP is more
relaxed than that in CoSaMP. This is mainly due to the fact that the
residual vector of BMP is calculated by projecting, while that of
CoSaMP is derived by pruning.

4. COMPUTATIONAL COMPLEXITY

Let |xmin| denote the smallest magnitude nonzero entry of sparse
signal x, and define ηmin = |xmin|/‖x‖2, which scales the worst
element to be recovered. The upper bound of the iteration number
nit, which is needed for perfect recovery, is given as follows.

Theorem 2. If the constant C defined in Theorem 1 satisfies C < 1,
then the number of iterations for perfect recovery is upper bounded
by

nit ≤ min

(
− log ηmin

− logC
+ 1,

1.5K

− logC

)
. (24)

The detailed proof of Theorem 2 is referred to the proof of The-
orem 6 in [14], since their principles are similar. According to The-
orem 2, the number of iterations needed satisfies nit ≤ O(K). The

6543



50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

K

R
ec

ov
er

y 
P

ro
ba

bi
lit

y

 

 

L = 2K
L = K
L = 0.5K
L = 0.25K
L = 0.1K

50 60 70 80 90

10−1

100

K
C

P
U

 R
un

in
g 

T
im

e
 

 

L = 2K
L = K
L = 0.5K
L = 0.25K
L = 0.1K

Fig. 2. For BMP algorithm, the probability of perfect recovery and
the average CPU running time versus sparsity level K with respect
to L = 2K, K, 0.5K, 0.25K, and 0.1K when N = 3000 and
M = 300 are demonstrated.

computational complexity for arbitrary L can be easily estimated by
multiplying the number of iterations with the complexity in each it-
eration.

Generally speaking, the computational complexity of comput-
ing ATyl−1

r is O(MN), computing A†
T̃ ly is O(M(K+L)2), and

updating ylr is O(MK2). Thus the complexity in each iteration is
O(M(N+(K+L)2)), which is a monotone strictly increasing func-
tion of L. Together with Theorem 2, the total computational com-
plexity is upper bounded by O(KM(N+(K+L)2)), which is com-
parable to that of matching pursuit algorithms.

To reduce the computational complexity, we should reduce the
complexity in each iteration as well as decrease the number of it-
erations needed. L is a tradeoff parameter between them: bigger
L may introduce more reliability indices in each iteration to reduce
the number of iterations needed, but results in higher complexity in
each iteration. However, extremely small L, such as L = 1, will
cause huge number of iterations, which greatly increases the total
complexity. Thus moderate L is preferred for sparse recovery with
high recovery probability and low computational complexity.

5. NUMERICAL SIMULATIONS

Two Monte Carlo simulations are performed in this section to com-
pare the recovery performance, including the probability of perfect
recovery and the average CPU running time, with respect to different
size of supplement set. In the experiments, the entries of sensing ma-
trix A are independently and identically distributed Gaussian with
zero mean and variance 1/M . The locations of nonzero entries of
the sparse signal x are randomly chosen among all possible choic-
es. These nonzero entries are independently Gaussian distributed
with zero mean and the same variance. The sparse signal is final-
ly normalized to have unit energy. If the support set is successfully
detected, this recovery is considered perfect, and the CPU running
time is recorded.

The first experiment compares the recovery performance of BM-
P versus sparsity level K with respect to different L, and the results
are depicted in Fig. 2. The parameter L is set to 2K, K, 0.5K,
0.25K, and 0.1K, respectively, where L = K corresponds to SP
algorithm and L = 2K to a variant of CoSaMP. The dimension pa-
rameters are N = 3000, M = 300, and the sparsity level K varies
from 50 to 90. The maximal iteration numberQ = K, which means
the support is expected to be recovered in K iterations. The experi-
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Fig. 3. For SAMP algorithm, the probability of perfect recovery and
the average CPU running time versus sparsity level K with respect
to L = 2K, K, 0.5K, 0.25K, and 0.1K when N = 3000 and
M = 300 are demonstrated.

ment is repeated for 500 trials to calculate the probability of perfect
recovery and the average CPU running time. As can be seen from
Fig. 2, for different choices of L, the probability of perfect recovery
is not much influenced. Their crucial sparsity Kmax, which is the
largest integer which guarantees 100% successful recovery, are all
52. The comparison of the average running time demonstrates that
L = 0.25K costs the least running time, which indicates BMP with
supplement set of size 0.25K may be a better option than SP and
CoSaMP for sparse recovery.

The second experiment revises the size of the supplement set in
the SAMP algorithm [17] to an arbitrary number, and the size L is
also set to 2K, K, 0.5K, 0.25K, and 0.1K, respectively. The step
size of SAMP is s = 5. The dimension parameters are the same as
those in the first experiment, and the sparsity level K varies from
70 to 110. The experiment is repeated for 500 trials to calculate the
probability of perfect recovery and the average CPU running time.
The results are presented in Fig. 3. As is revealed in this scenario,
the recovery probability is again not much influenced for differen-
t choices of L. The average running time reveals that the optimal
choice of L is 0.25K and 0.1K, which occupies the least computa-
tional resources. Comparing the recovery performances of these two
algorithms according to Fig. 2 and Fig. 3, the SAMP guarantees to
recover signals with larger sparsity, but costs more running time for
the estimation of sparsity level.

6. CONCLUSION

In this paper, we aim to provide comprehensive analysis on the opti-
mal size of supplement set for matching pursuit algorithms with the
idea of backtracking. Theoretical guarantees for sparse recovery are
derived. Provided that the sensing matrix satisfies the RIP of order
2K+L with a constant parameter, the original sparse signal is guar-
anteed to be recovered in finite iterations. The theoretical analysis
of computational complexity reveals that moderate L results in more
efficiency for large scale problems. Monte Carlo simulations com-
pare the recovery performances of BMP and SAMP, including the
probability of perfect recovery and the average CPU running time,
for L = 2K,K, 0.5K, 0.25K, and 0.1K, respectively. It is demon-
strated that the recovery probability is rather robust for a large range
of L, while L = 0.25K costs the least running time, which is more
efficient for practical use.
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