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ABSTRACT

Bayesian and generalized likelihood ratio tests are derived for detec-
tion of a common unknown signal of known rank K in M > K in-
dependent channels of white gaussian noise. The cases of known and
unknown noise variance are both treated. These derivations encom-
pass the development of explicit expressions for an invariant mea-
sure on the grassmannian manifold of K-dimensional subspaces of
complexN -dimensional space and parameterization of this manifold
to enable the calculation of the necessary marginalization integrals.
Performance of the detectors is compared by simulation.

Index Terms— Multiple-channel detection, Bayesian detection,
GLRT, Grassmannian, Coherence, Known-rank signal

1. INTRODUCTION

Statistical tests for correlation among collections of M ≥ 2 ran-
dom vectors have been used extensively in sensor signal processing.
WithM = 2, for example, the magnitude-squared coherence (MSC)
estimate has a significant history in connection with detecting the
presence of a common but unknown signal in two noisy channels
[1]. Motivated in large part by its utility in time delay estimation
for such applications as passive sonar and non-invasive monitoring
of mechanical systems, invariance properties of the MSC estimate
and its optimality and performance as a detection statistic under var-
ious assumptions were studied in detail between the 1970s and 1990s
(see, e.g., [2, 3, 4] and the tutorial and papers in [5]). Some atten-
tion was given simultaneously to the situation with M > 2, initially
building from estimators of multiple coherence [6]. Interest in this
setting increased in the 1980s as the ability to aggregate data from
multiple geographically distributed sensors became more prevalent
in application systems. In 1988, the generalized coherence (GC) es-
timate was introduced in [7], and its invariances and performance as
a multiple-channel detection statistic were studied extensively dur-
ing the 1990s [8, 9, 10, 11].

Recent interest in MIMO systems within both sensing and com-
munications contexts has precipitated new veins of work in multiple-
channel detection. In [12], a generalized likelihood ratio test (GLRT)
for spatial correlation among a collection of complex circular Gaus-
sian signals with unknown arbitrary covariance matrices was de-
rived. GLRTs and locally most powerful invariant tests for vector-
valued random processes with covariance matrices of known rank
were developed in [13, 14], primarily in the context of MIMO com-
munications applications. A bayesian test for diagonal covariance
matrix versus arbitrary non-diagonal covariance matrix for a zero-
mean complex gaussian M ×N matrix was derived in [15], and the
GC estimate was shown to be a sufficient statistic for this test.

This paper examines the situation in which the putative unknown
signal component in M channels of additive white gaussian noise is
known to have rank K with K < M . A specific model for this
situation is set forth in Section 2. Subsequently, two GLRTs are de-
rived: one for the case in which the noise variance is known and
the other for the case in which it is not known. The model used
here is different from the one employed in [13] in that it assumes
an unknown K-dimensional signal subspace that does not vary over
time rather than a rank-K covariance matrix. The derivation here
(as well as the form of the GLR) is correspondingly different than
the one in [13], and it is instructive in setting the stage for obtaining
bayesian tests in Section 4. The crucial step in deriving the bayesian
tests, one for known noise variance and one for unknown noise vari-
ance, is marginalization of likelihood functions by integration over
the grassmannian manifold GK,N of all K-dimensional subspaces
in CN with respect to a suitably normalized invariant measure. The
invariant measure and the parameterization of GK,N used to evalu-
ate the marginalization integrals are discussed in Appendix A.

2. MODEL AND BACKGROUND

Consider a detection scenario in which the presence of an unknown
signal of known rank K is to be detected using a suite of M > K
spatially distributed sensors. Received data at each sensor are as-
sumed to have been filtered to a band of interest, suitably sampled,
and appropriately adjusted in time delay and Doppler to correspond
to a physical state of interest for the test. This pre-processing pro-
vides M complex vectors, each of length N , which serve as the data
for the detector. Precisely, the data are modeled as a M × N data
matrix

X = AS + ν,

whose elements xmn represents samples of the noisy signal col-
lected at the mth sensor at time n. The K-dimensional signal sub-
space is defined by S ∈ CK×N , whose rows are orthonormal vectors
in CN , and the element amk of the matrix A ∈ CM×K is the com-
plex amplitude of the component of the signal received at sensor m
and in the subspace corresponding to the kth row of S. Both A and
S are unknown, except for the properties just described; in Section
4, however, a prior distribution on A will be assumed to derive a
bayesian test. The noise matrix ν is normally distributed with zero
mean and is both spatially and temporally white; i.e., itsNM×NM
covariance matrix is σ2INM .

The following sections address the detection problem

H0 :X ∼ CN (0, σ2I)

H1 :X ∼ CN (AS, σ2I), for some S and some non-zero A.
(1)
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Under H0, the joint probability density function of X conditioned
on σ2 is

p(X|H0, σ
2) = (πσ2)−MNe

− N
σ2

Tr(W )
. (2)

Under H1 the joint pdf of X conditioned on σ2, A, and S is

p(X|H1A,S, σ
2)

= (πσ2)−MNe
− 1
σ2

Tr(X−AS)(X−AS)† (3)

= (πσ2)−MNe
− N
σ2

Tr(W )
e
− 1
σ2

Tr((A−XS†)(A−XS†)†−XS†SX†)

where W = 1
N
X†X . Note that the non-zero eigenvalues of W are

exactly the eigenvalues of the sample-covariance matrix 1
N
XX†.

3. GLRT FOR RANK-K SIGNALS

This section derives the generalized likelihood ratio test statistic for
the detection problem (1). Recall that the signal rank K is assumed
known. The GLRT is obtained by considering the ratio of maximal
values of the joint likelihood functions of the unknown parameters
under the hypotheses H0 and H1 as follows:

max p(X|A,S, σ2)

max p(X|σ2)
≷H1
H0

γ.

3.1. GLRT with known noise variance

If the noise variance σ2 is known, it can be omitted from the maxi-
mization, and maximizing the likelihood function (3) with respect to
A yields the estimate Â = XS†. Substituting this estimate into the
likelihood ratio gives

maxA,S p(X|A,S, σ2)

p(X|σ2)
= e

1
σ2

Tr(XS†SX†)
= e

N
σ2

Tr(WP ) (4)

where P = S†S is an orthogonal projection into theK-dimensional
subspace defined by the rows of S. The space of all K-dimensional
subspaces of an N -dimensional vector space V over the complex
numbers is the grassmannian GK,N . The points in GK,N are in one-
to-one correspondence with the orthogonal projections P on V with
Tr(P ) = K. Hence maximizing the generalized likelihood ratio (4)
over P is achieved by maximizing Tr(WP ) over the grassmannian

arg max
P∈GK,N

Tr(DU†PU) = arg max
P∈GK,N

Tr(DP ′)

where W = UDU†, U is an N × N unitary matrix, and D is
an N × N diagonal matrix with non-increasing eigenvalues dD =
(λ1, λ2, . . . , λN ). Obviously Tr(W ) = Tr(D) = λ1 + · · · + λN .
Note that P ′ is still an orthogonal projector, and it is notationally
convenient to rename P ′ to P . The Schur-Horn theorem [16] states
that, if Λ = (λ1, λ2, . . . , λN ) is a vector of non-increasing eigen-
values of a Hermitian matrix H , then the vector dH of diagonal el-
ements of H is in the convex hull of all permutations ρ(Λ) of Λ;
i.e.,

dH =
∑
ρ

aρρ(Λ), 0 ≤ aρ ≤ 1,
∑
ρ

aρ = 1.

Since P is a rank-K orthogonal projection, its eigenvalues are 1 with
multiplicity K and 0 with multiplicity (N − K); i.e., its vector of
eigenvalues is dP = (1K ,0N−K) where 1n and 0n denote 1 × n
vectors of ones and zeros, respectively. Thus

Tr(DP ) = dDd
T
P =

∑
ρ

aρdD[ρ(1K ,0N−K)]T. (5)

The unique maximum of the right-hand side of (5) occurs at ρ = IN ;
i.e., Tr(DP ) is maximized when

P = P0 =

(
IK 0
0 0

)
.

Substituting P0 into (4) gives the generalized likelihood ratio (GLR)
when the noise variance is known as

GLR = e
N
σ2

Tr(DP0) = e
N
σ2

∑K
i=1 λi .

3.2. GLRT with unknown noise variance

If σ2 is unknown, the likelihood functions under H1 and H0 must
also be maximized with respect to σ2. The ML estimates are σ̂2 =

Tr(D)/M under H0 and σ̂2 = (Tr(D) − Tr(DP ))/M under H1.
Substituting the estimates of A and σ2 into the likelihoods (3) and
(2), yields

maxA,S,σ2 p(X|A,S, σ2)

maxσ2 p(X|σ2)
= (1− Tr(DP )/Tr(D))−MN . (6)

As in Section 3.1, maximizing (6) over P is accomplished by max-
imizing Tr(DP ) over GK,N . Substituting P0 from this maximiza-
tion into (6) yields the GLR for the unknown noise variance case
as

GLR =

(
1−

∑K
i=1 λi∑N
i=1 λi

)−MN

. (7)

4. BAYESIAN APPROACH FOR RANK K DETECTION

In this section, a bayesian approach is taken to address the detection
problem (1). With this approach, instead of formulating ML esti-
mates of the nuisance parameters A, S, and σ2, each parameter is
marginalized out of the likelihood functions in which it appears by
integration with respect to a corresponding prior probability distri-
bution. The essential element of this procedure is computation of the
integral

p(X|H1) =

∫
p(X|A,S, σ2)p(A)p(S)p(σ−2) dAdS d(σ−2).

First, the following prior pdf for A is chosen to accommodate the
marginalization:

p(A) = (πσ2
a)−MKe

− 1
σ2a

Tr(AA†)
.

This prior yields the marginalized likelihood

p(X|S, σ2) =
σ−2MN

πMN (1+β2)MK
e
− N
σ2

(Tr(D)−αTr(DP )) (8)

where β2 = σ2
a/σ

2 and α = β2/(1 + β2). Note that a uni-
form non-informative prior cannot be used here as it leads to a non-
normalizable distribution for X .

4.1. Bayesian detector with known noise variance

If σ2 is known, the marginalized likelihood ratio reduces to

p(X|S, σ2)

p(X|σ2)
=

1

(1 + β2)MK
e
Nα
σ2

Tr(DP )
. (9)

6537



P is marginalized by integrating (9) over the grassmannian with re-
spect to an invariant measure on GK,N ; i.e.,

1

(1 + β2)MK

∫
P∈GK,N

e
Nα
σ2

Tr(DP )
dµ(P ). (10)

In order to compute the integral (10), it is necessary to parameterize
P in local coordinates on GK,N . Using the results in Appendix A,
(10) becomes

1

(1+β2)MKvol(GK,N )

∫
Z∈C(N−K)×K

e
Nα
σ2

Tr(DPz)det(IK+Z†Z)−NdZ

(11)
wherePz as given in (19) and dZ=

∏N−K
i=1

∏K
j=1 dRe(zij)dIm(zij).

Rewriting (11) as

1

(1 + β2)MKvol(GK,N )

∫
Z

e
Nα
σ2

Tr(DPz)e−N log det(IK+Z†Z)dZ

(12)
this integral can be evaluated using the Laplace approximation [17]
with the following identities:

(IK + Z†Z)−1 = IK − ZZ† + (Z†Z)2 + · · · ≈ IK − Z†Z

log det(IK+Z†Z) = Tr(Z†Z − 1

2
(Z†Z)2 + . . . ) ≈ Tr(Z†Z)

Tr(DPz) = Tr(DK(IK+Z†Z)−1)+Tr(DN−KZ(IK+Z†Z)−1Z†)

≈ Tr(DK)− Tr(DKZ
†Z) + Tr(DN−KZZ

†)

where DK and DN−K are diagonal matrices with the first K and
the last N − K eigenvalues of D, respectively. The integral (12)
becomes

ηe
Nα
σ2

Tr(DK)

∫
e
−Nα
σ2

(
Tr

((
DK+σ2

α
IK

)
Z†Z

)
−Tr(DN−KZZ†)

)
dZ

= ηe
Nα
σ2

Tr(DK)

∫
e
−Nα
σ2

(∑N−K
i=1

∑K
j=1(λj−λK+i+

σ2

α
)

)
|zij |2

dzij

= ηe
Nα
σ2

Tr(DK)
N−K∏
i=1

K∏
j=1

∫
e
Nα
σ2

(
λj−λK+i+

σ2

α

)
|zij |2

dzij

= ηe
Nα
σ2

Tr(DK)
N−K∏
i=1

K∏
j=1

πσ2

Nα(λj − λK+i + σ2

α
)

where η = (1 + β2)MKvol(GK,N ). The likelihood ratio when σ2

is known is thus

Qe
Nα
σ2

∑K
i=1 λi

N−K∏
i=1

K∏
j=1

1

λj − λK+i + σ2

α

where Q = (πσ
2

Nα
)K(N−K) 1

(1+β2)MKvol(GK,N )
.

4.2. Unknown noise variance

When σ2 is unknown, σ2 may be marginalized by integrating (8)
with respect to an entropy prior as proposed in [15],

p(σ−2IM ) = τMqΓ−M (q)σ−2M(q−1)e−τMσ−2

. (13)

Thus under H1, the following posterior distribution is obtained:

η

(1 + β2)MK

∫
σ−2(p−1)e

− N
σ2

(Tr(D)−αTr(DP )+ τM
N )dσ−2

where p=M(N+q−1)+1 and η = τMq/πMNΓM (q). Integration
yields

p(X|H1, S) =
ηΓ(p)

(1 + β2)MK
(N(Tr(D)− αTr(DP ) +

τM

N
))−p.

Similarly,

p(X|H0) = ηΓ(p)(N(Tr(D) +
τM

N
))−p

where q > 1−N−1/M . A minimal prior assumption is to take
q = 1. As τ→0, the marginalized likelihood ratio is

p(X|H1, S)

p(X|H0)
=

1

(1 + β2)MK
(1− αTr(D̃P ))−p (14)

where the notation D̃ = D/Tr(D) is introduced. Marginalizing P
in (14) is achieved by integrating with respect to invariant measure,
taken to be the prior for P , over GK,N ; i.e.,

p(X|H1)

p(X|H0)
=

1

(1+β2)MK

∫
P∈GK,N

(1−αTr(D̃P ))−pdµ(P ).

Again, through parameterization of the grassmannian, the integral
becomes

1

(1+β2)MKvol(GK,N )

∫
Z

e−p log(1−αTr(D̃PZ))−N log det(IK+Z†Z)dZ

which can be approximated using the Laplace approximation. Ap-
plying the following identity (up to second order in Z)

log(1− αTr(D̃PZ))≈ log(1− αTr(D̃K))

+ γ
(

Tr(D̃KZ
†Z)− Tr(D̃N−KZZ

†)
)

where γ = α/(1− αTr(D̃K)), the integral becomes

(1− αTr(D̃K))−p

(1+β2)MKvol(GK,N )

∫
e−pγ(Tr((D̃K+δIK)Z†Z)−Tr(D̃N−KZZ

†))dZ

=
(1−αTr(D̃K))−p

(1+β2)MKvol(GK,N )

∫
e−pγ(

∑N−K
i=1

∑K
j=1(λj−λK+i+δ))|zij |2dzij

=
(1−αTr(DK))−p

(1 + β2)MKvol(GK,N )

N−K∏
i=1

K∏
j=1

π

pγ(λj − λK+i + δ)

where δ = N/pγ. The likelihood ratio is thus

p(X|H1)

p(X|H0)
= Q

(
1− α

∑K
i=1 λi∑N
i=1 λi

)K(N−K)−p N−K∏
i=1

K∏
j=1

1

λj−λK+i+δ

where Q = (π/pα)K(N−K)/((1 + β2)MKvol(GK,N )) and p =
MN + 1.

5. PERFORMANCE RESULTS

Ideally, the bayesian detectors developed here should be evaluated
in terms of criteria such as expected loss minimization or probability
of error. It is convenient here to compare with the GLRT in terms
of ROC curves in a particular situation, leaving a more thorough
analysis to a future paper. Figure 1 shows the ROC curve for GLRT
and bayesian detectors with known and unknown noise.
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Fig. 1. ROC for GLRT and bayesian detectors for M = 4 sensors,
rank K = 2 and 100, 000 realizations of length N = 128. The
noise variance is σ2 = σ2

a = 0.1 and SNR=−10dB.

A. PARAMETERIZATION AND INVARIANT MEASURE
FOR GK,N

The first part of this appendix follows work of Nicolaescu [18] (see
also [19]). Points in GK,N (C) are in one-to-one correspondence
with orthogonal projections P of CN onto a K-dimensional sub-
space V with Tr(P ) = K. The integral (10) is thus an integral over
GK,N . GK,N is a smooth complex manifold of complex dimension
K(N − K). In order to compute the integral (10), local coordi-
nates on GK,N about P0 are needed. To this end, denote by L0 the
subspace of CN spanned by the first K vectors {e1, . . . , eK} of the
standard basis. Consider the space of all linear maps Z : L0 → L⊥0 .
Choosing bases for L0 and L⊥0 , each such map Z is represented as
an (N − K) × K complex matrix and can be associated with the
subspace LZ ⊂ CN defined by

LZ = {x+ Zx : x ∈ L0}. (15)

These are called graph subspaces due to their association with the
graphs of the maps Z; i.e., {(x, Zx) : x ∈ L0}. The orthogonal
complement of LZ is

L⊥Z = {−y + Z†y : y ∈ L⊥0 }. (16)

In what follows, it will be useful to construct orthonormal bases for
LZ and L⊥Z in terms of orthonormal bases for L0 and L⊥0 . For L0

and L⊥0 , take the standard basis {e1, . . . , eN} of CN and note that

ej for j = 1, . . . ,K span L0

ej for j = 1, . . . , N span L⊥0 .

It is straightforward to verify that

fj = (I0 +Z†Z)−
1
2 ej +Z(I0 +Z†Z)−

1
2 ej , j = 1, . . . ,K (17)

is an orthonormal basis for LZ and

fj = −(I0⊥+ZZ†)−
1
2 ej +Z†(I0⊥+ZZ†)−

1
2 ej , j=K+1, . . . , N.

(18)
Note that both (I0 + Z†Z) and (I0⊥ + ZZ†) are Hermitian and
positive definite. The orthogonal projection onto LZ may now be
written as the block matrix

PZ =

(
(IK + Z†Z)−1 (IK + Z†Z)−1Z†

Z(IK + Z†Z)−1 Z(IK + Z†Z)−1Z†

)
. (19)

This yields a smoothly parameterized set

Γ = {PZ : Z ∈ C(N−K)×K} (20)

which defines an open subset of GK,N containing P0. This open
subset covers all of GK,N except a set of measure zero.

In order to define non-informative priors on GK,N and to com-
pute marginalization integrals over GK,N it is necessary to define
an invariant measure. This is conveniently achieved through the use
of differential forms following James [20]. By analogy with James’
invariant measure for the real grassmannian, the invariant volume
form (measure) on GK,N can be defined as

w = (−2i)−K(N−K)

(
K∧
i=1

N−K∧
j=1

〈hj , dbi〉

)
∧

(
K∧
i=1

N−K∧
j=1

〈dbi, hj〉

)
.

In this expression, at each point L in GK,N , {bi, i = 1, . . . ,K}
is an orthonormal basis for L and {hj ; j = 1, . . . , N − K} is an
orthonormal basis for L⊥. Using the bases (17) and (18),

K∧
i=1

N−K∧
j=1

〈fj , dfi〉

=

K∧
i=1

N−K∧
j=1

−〈ej , (I + ZZ†)−
1
2 dZ(I + Z†Z)−

1
2 ei〉

= (−1)K(N−K)
K∧
i=1

N−K∧
j=1

[(I + ZZ†)−
1
2 ⊗ (I + Z†Z)−

1
2 dZ]ji

= (−1)K(N−K) det[(I+ZZ†)−
1
2 ⊗ (I+Z†Z)−

1
2 ]

K∧
i=1

N−K∧
j=1

dzji

= (−1)K(N−K)det(I+ZZ†)−
K
2 det(I+Z†Z)−

(N−K)
2

K∧
i=1

N−K∧
j=1

dzji

= (−1)K(N−K) det(I + Z†Z)−
N
2

K∧
i=1

N−K∧
j=1

dzji.

Thus

w = 2−K(N−K)iK
2(N−K)2 det(I+Z†Z)−N

K∧
j=1

N−K∧
i=1

dzij∧dz̄ij

and so the normalized invariant measure on grassmannian GK,N is

dµ(Z) =
1

vol(GK,N )
det(I+Z†Z)−N

N−K∏
i=1

K∏
j=1

dRe(zij)dIm(zij).

Here, vol(GK,N ) denotes the volume of the grassmannian

vol(GK,N ) =

∫
GK,N

det(I + Z†Z)−N
K∏
i=1

N−K∏
j=1

dRe(zij)dIm(zij)

=

∏N
`=N−K+1A2`−1∏K

`=1A2`−1

where A` is the (` − 1)-dimensional surface area of the unit sphere
in R`:

A` =
2π`/2

Γ(`/2)
.
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