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ABSTRACT
We investigate the problem of a monostatic radar transceiver trying
to detect a sparse target scene. Several past works employ com-
pressed sensing (CS) algorithms to this type of problem, but either
do not address sample rate reduction, impose constraints on the radar
transmitter, or propose CS recovery methods with prohibitive dic-
tionary size. Here, using the Xampling framework, we describe a
sub-Nyquist sampling approach which overcomes the shortcomings
of previous methods. Xampling allows reducing the number of sam-
ples needed to accurately represent the signal, directly in the analog-
to-digital conversion process. After sampling, the entire digital re-
covery process is performed on the low rate samples without having
to return to the Nyquist rate. With our recovery method we are able
to obtain good detection performance even at SNRs as low as -25dB.

Index Terms— compressed sensing, radar, sparse recovery,
sub-Nyquist sampling, delay-Doppler estimation.

1. INTRODUCTION

We consider target detection and feature extraction in a single
transceiver, monostatic, narrow-band pulse-train radar system, using
sub-Nyquist sampling rates. Targets are non-fluctuating point tar-
gets, sparsely populated in the radar’s unambiguous time-frequency
region: delays up to the Pulse Repetition Interval (PRI) and Doppler
frequencies up to its reciprocal the Pulse Repetition Frequency
(PRF). We propose a recovery method which can detect and estimate
targets’ delay and Doppler, using a linear, non-adaptive sampling
technique at a rate significantly lower than the radar signal’s Nyquist
frequency, assuming the number of targets L is small.

Current state-of-the-art radar systems sample at the signal’s
Nyquist rate, which can be hundreds of MHz and higher. The goal
of this work is to break the link between radar signal bandwidth
and sampling rate. The sub-Nyquist Xampling (“compressed sam-
pling”) [1] method we use is an analog-to-digital conversion (ADC)
which performs analog prefiltering of the signal before taking point-
wise samples. These compressed samples (“Xamples”) contain the
information needed to recover the desired signal parameters. This
work expands [2], adding Doppler to the target model and proposing
a new digital recovery method to estimate it.

Past works employ compressed sensing (CS) algorithms to this
type of problem, but do not address sample rate reduction and con-
tinue sampling at the Nyquist rate [3,4]. Other works combine radar
and CS in order to reduce the receiver’s sampling rate, but in do-
ing so impose constraints on the radar transmitter and do not treat
noise [5], or require an infinite number of samples [6]. Another
line of work proposes single stage CS recovery methods with dic-
tionary size proportional to the product of delay and Doppler grid
sizes, making them infeasible for many realistic scenarios [4, 7].

Our approach is based on the observation that the received sig-
nal can be modeled with 3L degrees of freedom (DOF). Signals

which can be described with a fixed number of DOF per unit of time
are known as Finite Rate of Innovation [8] signals. Our proposed
method recovers these DOF from low rate samples.

At the crux of our approach is a coherent superposition of time
shifted and modulated pulses, the Doppler focusing function Φ(t; ν).
For any Doppler frequency ν, this function combines the received
signals from different pulses so targets with appropriate Doppler fre-
quencies come together in phase. For each ν, Φ(t; ν) is processed
as a simple one-dimensional CS problem and the appropriate delays
are recovered. The gain from this method is both in terms of signal-
to-noise ratio (SNR) and Doppler resolution. For P pulses adding
coherently, we obtain a factor P SNR improvement over white noise
(which adds incoherently, i.e. in power). In addition, denoting the
PRI as τ , the width of the Doppler focus for each Φ(t; ν) is 2π/Pτ ,
meaning that delays of targets separated in Doppler by more than
2π/Pτ will not interfere with each other.

Simulations provided in Section 6 show that when sampling at
one tenth the Nyquist rate, our Doppler focusing recovery method
outperforms both two-stage CS recovery and classic radar process-
ing [9]. When the SNR reaches -25dB, our approach achieves the
performance of classic processing operating at the full Nyquist rate.

The main merits of our proposed method are as follows:

1. Low rate ADC and DSP – we acquire the sub-Nyquist sam-
ples containing information needed for target recovery, and
then digitally recover the unknown target parameters using
low rate processing, without returning to the higher Nyquist
rate.

2. Scaling with problem size – many CS delay-Doppler estima-
tion methods construct a dictionary with a column for each
delay-Doppler hypothesis, creating prohibitive memory re-
quirements. Our method separates the Doppler from delay
recovery, making each CS delay recovery indifferent to the
underlying Doppler and requiring for less memory.

3. Transmitter compatibility – our recovery method does not
impose any restrictions on the transmitted signal, provided it
meets the assumptions stated in Section 2.

2. RADAR MODEL

We consider a radar transceiver that transmits a pulse train

xT (t) =

P−1∑
p=0

h(t− pτ), 0 ≤ t ≤ Pτ (1)

consisting of P equally spaced pulses h(t). The pulse-to-pulse
delay τ is referred to as the PRI, and its reciprocal 1/τ is the
PRF. The pulse h(t) is a known time-limited baseband func-
tion with continuous-time Fourier transform (CTFT) H(ω) =∫∞
−∞ h(t)e−jωtdt. We assume that H(ω) has negligible energy

6531978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



at frequencies beyond Bh/2 and we refer to Bh as the bandwidth
of h(t). The target scene is composed of L non-fluctuating point
targets (Swerling 0 model, see [10]), where we assume that L is
known, although this assumption can easily be relaxed. The pulses
reflect off the L targets and propagate back to the transceiver. Each
target l is defined by three parameters: a delay τl, a Doppler fre-
quency νl and a complex amplitude αl, proportional to the target’s
radar cross section (RCS) and all propagation factors.

Throughout, we make the following assumptions on the targets’
location and motion, which allow us to obtain a simplified expression
for the received signal.

A1. “Far targets” - target-radar distance is large compared to the
distance change during observation interval which allows for
constant αl.

A2. “Slow targets” - small target velocity allows for constant τl
during observation interval and constant Doppler phase dur-
ing pulse time Tp.

A3. “Small acceleration” - target velocity remains approximately
constant during observation interval allowing for constant νl.

These assumptions all rely on slow “enough” relative motion be-
tween the radar and its targets. Radar systems tracking people,
ground vehicles and sea vessels usually comply quite easily. As for
airborne targets, care must be taken to ensure compliance.

Using these assumptions, we can write the received signal as

x(t) =

P−1∑
p=0

L−1∑
l=0

αlh(t− τl − pτ)e−jνlpτ . (2)

It will be convenient to express the signal as a sum of single frames

x(t) =

P−1∑
p=0

xp(t) (3)

where

xp(t) =

L−1∑
l=0

αlh(t− τl − pτ)e−jνlpτ . (4)

In reality x(t) will be contaminated by additive noise. We will take
this into account in our simulations.

Our goal in this work is to accurately detect the L targets, i.e. to
estimate the 3L DOF {αl, τl, νl}L−1

l=0 in (2), using the least possible
number of digital samples.

3. DOPPLER FOCUSING

We now introduce and explain the main idea in this paper, called
Doppler Focusing. This processing technique uses target echoes
from different pulses to create a single superimposed pulse, improv-
ing SNR for robustness against noise and implicitly estimating tar-
gets’ Doppler in the process. Using (4), we define the following time
shift and modulation operation on the received signal:

Φ(t; ν) =

P−1∑
p=0

xp(t+ pτ)ejνpτ

=

P−1∑
p=0

L−1∑
l=0

αlh(t− τl)ej(ν−νl)pτ

=

L−1∑
l=0

αlh(t− τl)
P−1∑
p=0

ej(ν−νl)pτ . (5)

We now analyze the sum of exponents in (5). For any given ν,
targets with Doppler frequency νl in a band of width 2π/Pτ around
ν, i.e. in Φ(t; ν)′s “focus zone”, will achieve coherent integration
and an SNR boost of approximately

g(ν|νl) =

P−1∑
p=0

ej(ν−νl)pτ
|ν−νl|<2π/Pτ∼= P (6)

compared with a single pulse. On the other hand, since the sum of
P equally spaced points covering the unit circle is generally close
to zero, targets with νl not “in focus” will approximately cancel out.
Thus g(ν|νl) ∼= 0 for |ν − νl| > 2π/Pτ . See Fig. 1 for an example
of g(ν|νl). Hence we can approximate (5) by

Fig. 1: Example of g(ν|νl) for P = 200 pulses and νl = 0. Red line
marks “focus zone”, i.e. |ν| < 2π/Pτ . Frequencies outside focus
zone are severely attenuated.

Φ(t; ν) ∼= P
∑

l:|ν−νl|<2π/Pτ

αlh(t− τl). (7)

Instead of trying to estimate delay and Doppler together, we
have reduced our problem to delay only estimation for a small range
of Doppler frequencies, with increased amplitude for improved per-
formance against noise.

We now show how Doppler focusing can also be performed in
the frequency domain, paving the way towards sub-Nyquist Doppler
focusing. Using (4), and denotingXp(ω) as the CTFT of xp(t+pτ):

Xp(ω) = H(ω)

L−1∑
l=0

αle
−jωτle−jνlpτ . (8)

Taking the CTFT of Φ(t; ν) as a function of t:

Ψ(ω; ν) = CTFT(Φ(t; ν)) =

P−1∑
p=0

Xp(ω)ejνpτ

= H(ω)

L−1∑
l=0

αle
−jωτl

P−1∑
p=0

ej(ν−νl)pτ . (9)

All 3L of the problem’s parameters appear in (9). Its structure is that
of a delay estimation problem as we will see in Section 4, combined
with the familiar sum of exponents term from (5).

We have seen that Doppler focusing reduces a delay-Doppler
estimation problem to a delay-only problem for a specific Doppler
frequency. In the next section we describe delay recovery from sub-
Nyquist sampling rates using Xampling.
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4. SUB-NYQUIST DELAY RECOVERY

The problem of recovering the 2L amplitudes and delays in

φ(t) =

L−1∑
l=0

αlh(t− τl), 0 ≤ t < τ (10)

from sub-Nyquist samples has been previously studied in [2, 8, 11,
12]. Since Doppler focusing yields such a problem, we now review
how to solve (10) at a sub-Nyquist sampling rate.

4.1. Xampling

Xampling [1, 13, 14] can be interpreted as “compressed sampling”,
in the sense that we are performing data compression inherently in
the sampling stage. To do this, we do not simply reduce sampling
rate, since this is bound to cause loss of information. Instead, we
perform an analog prefiltering operation on our signal and only then
sample it, in order to extract the required information for recovery.
We now show how the signal’s Fourier series coefficients are related
to the problem’s unknown parameters [6, 8, 11, 12], and how to ac-
quire these Fourier coefficients via Xampling.

Since φ(t) is confined to the interval t ∈ [0, τ ], it can be ex-
pressed by its Fourier series

φ(t) =
∑
k∈Z

c[k]ej2πkt/τ , t ∈ [0, τ ], (11)

where

c[k] =
1

τ

∫ τ

0

φ(t)e−j2πkt/τdt

=
1

τ

L−1∑
l=0

αl

∫ τ

0

h(t− τl)e−j2πkt/τdt

=
1

τ
H(2πk/τ)

L−1∑
l=0

αle
−j2πkτl/τ . (12)

From (12) we see that the unknown parameters {αl, τl}L−1
l=0 are em-

bodied in the Fourier coefficients c[k] in the form of a complex sinu-
soid problem. For these problems, if there is no noise, 2L samples
are enough to recover the unknown α’s and τ ’s [8], using spectral
analysis methods such as the annihilating filter [15] or matrix pen-
cil [16]. The lower bound can be achieved only when the noise is
negligible. When there is substantial noise in the problem, having
more than 2L coefficients will allow the recovery to be more robust.

Our signals exist in the time domain, and therefore we do not
have direct access to c[k]. We can use the Direct Multichannel Sam-
pling scheme described in [11] in order to obtain the Fourier series
coefficients.

4.2. Compressed Sensing Recovery

We now describe a CS-based recovery method, operating on the
Xamples c[k], which is more robust to noise.

Assume the delays are aligned to a grid τl = ql∆τ where 0 ≤
ql < Nτ and we choose ∆τ so that Nτ = τ/∆τ is an integer.
Choose a set of indices κ = {k0, ..., k|κ|−1}, and define the corre-
sponding vector of Fourier coefficients

c = [c[k0] ... c[k|κ|−1]]T ∈ C|κ|. (13)

We can then write (12) in vector form as c = 1
τ
HVx where H is

a |κ| × |κ| diagonal matrix with diagonal elements H(2πki/τ) and

V is a |κ| ×Nτ matrix with elements Vmq = e−j2πkmq/Nτ , i.e. it
is composed of |κ| rows of the Nτ × Nτ DFT matrix. The vector
x ∈ CNτ is L-sparse, where each index q contains the amplitude of
a target with delay q∆τ if it exists, or zero otherwise. Defining the
CS dictionary A = 1

τ
HV ∈ C|κ|×Nτ we obtain the CS equation

c = Ax. (14)

Estimating delays can be carried out by solving (14) and finding x’s
support - any nonzero index q denotes a target with delay q∆τ .

For any set of sampled Fourier coefficients, a variety of CS tech-
niques can be employed for recovery, see [17–19] and references
within. Also, choosing the coefficients at random produces favor-
able conditions for CS, aiding recovery in the presence of noise. If
the indices in κ are selected uniformly at random, it can be shown
that if |κ| ≥ CL(logNτ )4, for some positive constant C, then we
are able to recover x, using a CS recovery algorithm with high prob-
ability.

5. DELAY-DOPPLER RECOVERY USING DOPPLER
FOCUSING

We now show how Xampling can be performed on the multi-pulse
signal (2). We then describe the Doppler focusing method, and com-
pare it to previous CS approaches.

5.1. Applying Doppler Focusing and CS Recovery

Similarly to the Xampling technique of Section 4 which obtained
c[k], we can extend this technique to each of the pulses xp(t) of
the multi-pulse signal (2) to obtain cp[k]. Since xp(t) is confined
to the interval t ∈ [pτ, (p + 1)τ ], we can replace t → t + pτ and
αl → αle

−jνlpτ in (12) to obtain

cp[k] =
1

τ
H(2πk/τ)

L−1∑
l=0

αle
−jνlpτe−j2πkτl/τ , (15)

where we used the fact that since both k, p ∈ Z we have e−j2πkp ≡
1. From (15) we see that all 3L unknown parameters {αl, τl, νl}L−1

l=0

are embodied in the Fourier coefficients cp[k] in the form of a com-
plex sinusoid problem.

Having acquired cp[k] using Xampling, we now perform the
Doppler focusing operation for a specific frequency ν

Ψν [k] =

P−1∑
p=0

cp[k]ejνpτ

=
1

τ
H(2πk/τ)

L−1∑
l=0

αle
−j2πkτl/τ

P−1∑
p=0

ej(ν−νl)pτ . (16)

From (9) we see that Ψν [k] = Ψ(ω; ν)|ω=2πk/τ .
Following the same arguments as in (6), for any target l satisfy-

ing |ν − νl| < 2π/Pτ we have

P−1∑
p=0

ej(ν−νl)pτ ∼= P. (17)

Therefore, Doppler focusing can be performed on the low rate sub-
Nyquist samples:

Ψν [k] ∼=
P

τ
H(2πk/τ)

∑
l:|ν−νl|<2π/Pτ

αle
−j2πkτl/τ . (18)
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Equation (18) is identical in form to (12) except it is scaled by P ,
increasing SNR for improved performance with noise. Furthermore,
we reduced the number of active delays. For each ν we now have a
delay estimation problem, which can be written in vector form using
the same notations of Section 4 as

Ψν =
P

τ
HVxν (19)

where
Ψν = [Ψν [k0] ... Ψν [k|κ|−1]]T ∈ C|κ|. (20)

This is exactly the CS problem we have already shown how to solve,
with one important difference. In the delay-only problem of Sec-
tion 4, the model order L was known. Here, since there are L targets
but we have no prior knowledge of their distribution in the delay-
Doppler grid, for each ν we must either estimate the model order
0 ≤ Lν ≤ L, or take a worst case approach and assume Lν = L.
The problem of estimating the number of sinusoids in a noisy se-
quence has been studied extensively [20–22]. Solving (19) with an
accurate model order can decrease computation time (although es-
timating model order is also time consuming) and possibly reduce
detection of spurious targets. In our simulations, to avoid model
order errors which influence recovery performance, we employ the
worst case approach.

The Doppler focusing technique is a continuous operation on ν,
and can be performed for any Doppler frequency. Since the focus
zone for each ν is of width 2π/Pτ , we can find various finite sets
of ν’s spanning [0, 2π/τ ]. For any such set, define its size as Nν .
For each ν in the set, we solve (19) assuming xν ’s support is of size
L. This problem can be solved using an abundance of CS algorithms
as described in Section 4. After solving Nν separate CS problems
with dictionary of size |κ| × Nτ , we hold at most LNν estimated
amplitudes. Since the absolute value of amplitudes recovered in the
support is indicative of true target existence as opposed to noise, we
take the L strongest ones as true target locations.

5.2. Previous CS Approaches

A possible approach to the problem at hand could be a two-stage CS
recovery technique, first estimating delays and afterwards for each
delay estimating Doppler (or vice versa). These two-stage meth-
ods tend to be suboptimal since the problem is not separable, and a
mistake in the first estimation stage propagates to the second stage
where it cannot be undone. We compare our method to this type of
recovery in Section 6.

To overcome this inefficiency, several works [4,7] employ a sin-
gle stage CS recovery technique. Instead of estimating delays and
Doppler frequencies separately and sequentially, they estimate the
most likely (τl, νl) pairs. The drawback of this technique is that it re-
quires using a dictionary with dimensions proportional to NτNνFs,
where Fs is the problem’s sample rate. Since grid sizes can easily
reach 103, and sample rates are on the order of MHz, the dictionary
grows rapidly rendering these methods infeasible for even moderate
problem size.

6. SIMULATION RESULTS

We now present some numerical experiments illustrating recovery
performance. We corrupt the received signal x(t) with additive
white Gaussian noise n(t) with power spectral density Sn(f) =
N0/2, bandlimited to x(t)’s bandwidth Bh. We define the signal to
noise power ratio for target l as SNRl =

∫ Tp
0
|αlh(t)|2dt/TpN0Bh

where Tp is the pulse time. The scenario parameters used were num-
ber of targets L=5, number of pulses P=100, PRI τ=10µsec, and
Bh=200MHz. The classic time and frequency resolutions (“Nyquist
bins”), defined as 1/Bh and 1/Pτ , are 5nsec and 1KHz accord-
ingly. In order to demonstrate a 1:10 sampling rate reduction, our
sub-Nyquist Xampling scheme generated 200 Fourier coefficients
per pulse, as opposed to the 2000 Nyquist rate samples. We tested
Doppler focusing with two types of Fourier coefficient sets κ, a
consecutive set and a random set. We compared Doppler focusing
recovery with classic processing and a two-stage recovery method as
described in [6] (where we use a CS algorithm instead of ESPRIT)
using a Hit-Rate criterion: we define a “hit” as a delay-Doppler
estimate which is circumscribed by an ellipse around the true target
position in the time-frequency plane. We used an ellipse with axes
equivalent to ±3 times the Nyquist bins.

Fig. 2: Hit Rate for classic processing, two-stage CS recovery and
Doppler focusing as function of SNR. Sub-Nyquist sampling rate
was one tenth the Nyquist rate.

Fig. 2 demonstrates the hit-rate performance of the different re-
covery methods for various SNR values. It is evident that Doppler
focusing is superior to the other sub-Nyquist recovery techniques.
Between the two Doppler focusing approaches, consecutive coeffi-
cients are better suited for lower SNR, while choosing coefficients
randomly improves performance as SNR increases. Also, random
coefficients, when producing a hit, have very small delay errors even
compared with Nyquist rate classic processing.

7. CONCLUSION

We demonstrated a radar sampling and recovery method called
Doppler focusing, which employs the techniques of Xampling and
CS, and is independent of the radar signal’s bandwidth. Doppler
focusing allows for low rate sampling and digital processing. It also
leads to CS recovery with dictionary size scaling with delay grid
size only, and imposes no constraints on transmitted signal. We
compared our method to other sub-Nyquist recovery techniques and
have seen its clear advantage in simulations. When sampling at one
tenth the Nyquist rate, and for SNR above -25dB, Doppler focusing
achieves results almost identical to classic recovery working at the
Nyquist rate.
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