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ABSTRACT

Frequently, we use the Moore-Penrose pseudoinverse (MPP) even
in cases when we do not require all of its defining properties. But
if the running time and the storage size are critical, we can do bet-
ter. By discarding some constraints needed for the MPP, we gain
freedom to optimize other aspects of the new pseudoinverse. A
sparser pseudoinverse reduces the amount of computation and stor-
age. We propose a method to compute a sparse pseudoinverse and
show that it offers sizable improvements in speed and storage, with
a small loss in the least-squares performance. Differently from pre-
vious approaches, we do not attempt to approximate the MPP, but
rather to produce an exact but sparse pseudoinverse. In the underde-
termined (compressed sensing) scenario we prove that the rescaled
sparse pseudoinverse yields an unbiased estimate of the unknown
vector, and we demonstrate its potential in iterative sparse recovery
algorithms, pointing out directions for future research.

Index Terms— Efficient computation, Moore-Penrose pseu-
doinverse, sparse pseudoinverse

1. INTRODUCTION

In discrete linear inverse problems, we seek to find x from mea-
surements y, when they are related by a linear system, y = Ax,
A ∈ Rm×n. Such problems come in two very different flavors:
overdetermined (m > n) and underdetermined (m < n). An ex-
ample is computed tomography (CT). If we target a coarse recon-
struction resolution (less pixels than rays), the system matrix is tall
and we deal with an overdetermined system. In the opposite case
the system is underdetermined. Entries of the model matrix quantify
how much the ith ray affects the jth pixel.

Consider an overdetermined problem

y = Atx + n, (1)

where At ∈ Rm×n, m > n, n is noise, and t stands for “tall”. In
general, when y is perturbed by noise, it is not anymore in R(At)
and no solution x̂ such that y = Atx̂ exists. If n = 0, we can
compute x by inverting any full rank n × n minor of At, assuming
that At has full column rank. With n 6= 0 we get the solution cor-
responding to the orthogonal projection of y onR(At) by applying
the Moore-Penrose pseudoinverse (MPP). Explicit form of the MPP
solution is x̂ = A†ty = (A>t At)

−1A>t y.
The key problem is that the complexity of applying and storing

the MPP is Θ(mn), which is in some cases too expensive. Focus
of this paper is on computing a different (exact) pseudoinverse that
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requires considerably less operations and storage, but does not incur
a large hit in output SNR.

MPP of the matrix A is the unique matrix A† satisfying

AA†A = A, (AA†)> = AA†,

A†AA† = A†, (A†A)> = A†A. (2)

Ordinarily we do not reconsider the choice of the pseudoinverse
when the least-squares properties are not critical. But if the com-
putation time and the amount of storage are limited, it is worthwhile
to replace some of the requirements for MPP with different ones
reflecting these constraints. In applications of our interest, the low-
power embedded processor used for number crunching can execute
only a fraction of operations required to apply the MPP at the target
frame rate. The same goes for the required storage (but less dramat-
ically).

Sparse pseudoinverse is useful in the underdetermined case as
well. Namely, we show that it can be used as a building block of al-
gorithms for sparse vector recovery (compressed sensing). We focus
on iterative algorithms, following an example presented by Mon-
tanari at ITW 2012 [1]: Given a budget of k matrix-vector multi-
plications, what can you say about the solution of an underdeter-
mined linear inverse problem y = Afx, under certain priors on x
(f stands for “fat”). Typically x is in some sense low-dimensional,
for example sparse. These iterative algorithms have two blocks: 1)
a matched-filtering-like linear block, followed by 2) a non-linearity.
Depending on the application, the non-linearity is either thresholding
(iterative hard thresholding (IHT) [2, 3, 4], iterative soft thresholding
(IST) [5]), or a more general denoising [1, 6]. Clearly it is desirable
to reduce the complexity of each building block, while maintain-
ing the performance. We demonstrate encouraging initial results by
using the sparse pseudoinverse in the linear stage and point out di-
rections for future work.

1.1. Prior Art

Replacing full by sparse matrices to reduce the computation cost is
not at all a new idea. When solving large systems of linear equa-
tions, often coming from partial differential equations, it is favor-
able to have sparse preconditioning matrices. This includes precon-
ditioners for multipole methods [7] or for the Helmholtz equation
[8]. In [9] the author observes that the inverse finite element method
(FEM) matrices have many small elements and then simply thresh-
olds them. Approximating the MPP by a sparse matrix is proposed in
[10] in the context of MRI reconstruction. The authors use a greedy
algorithm adding elements one by one. In [11, 12, 13] the authors
sparsify inverse covariance matrices in the context of speech recog-
nition. When the forward matrix is also sparse it is important to
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compare our method with known iterative algorithms such as Kacz-
marz [14] or randomized Kaczmarz [15]. To take advantage of spar-
sity in implementations, we can either hardcode the multiplication,
or use fast sparse-matrix-vector multiplication algorithms [16, 17] if
universality is desired.

1.2. Main Contributions

First, we propose a new method for solving overdetermined linear
inverse problems by the sparse pseudoinverse. It outperforms the
approaches based on sparse approximations of MPP and the itera-
tive algorithms for an equivalent number of elementary operations.
It is best suited for moderate-size systems as computing a pseudoin-
verse for very large matrices is expensive. A good example and the
inspiration for this paper are embedded applications. Our method
offers sizable savings in execution time and storage. The savings
increase if we can trade off the inverting property for sparsity. We
stress that we do not aim at approximating the MPP by a sparse ma-
trix. Rather, we are computing an exact pseudoinverse with many
zeros. We demonstrate that some obvious ideas to reduce the com-
putation, such as inverting any full rank minor, perform much worse.

Second, we propose to use the sparse pseudoinverse in the un-
derdetermined case for sparse recovery or compressed sensing [18].
We show that the sparse pseudoinverse can be a part of iterative al-
gorithms such as [6]. We prove that the expected value of estimat-
ing x by the sparse pseudoinverse is indeed x for different random
ensembles of forward matrices. This property is important for as-
sessing the performance of the sparse pseudoinverse in iterative al-
gorithms. Finding the optimal parameters for these algorithms as
was done in [19] is beyond the scope of this paper. Even with an
ad hoc choice of parameters, we get results comparable to state-of-
the-art, with less computation. The results confirm that alternative
pseudoinverses have practical merit in both overdetermined and un-
derdetermined scenarios.

2. OVERDETERMINED CASE

Imagine performing a low-resolution tomographic reconstruction of
an object on low-power embedded hardware. The relationship be-
tween image elements x and measurements y is given as

y = Atx + n, (3)

where the model matrix At ∈ Rm×n, m>n, is determined by the
hardware and n ∈ Rm represents the measurement noise. We seek
the solution as

x̂ = By , (4)

for some reconstruction matrix B ∈ Rn×m that is computed offline
and stored on the device. Applying a dense B in (4) is too expen-
sive both in terms of the processing time and the consumed memory.
Consequently, we cannot apply the MPP. Note that the optimal solu-
tion to (4) in the MSE sense is not given by the MPP, but as [20]

BMSE = CxA
>(ACxA

> + Cn)−1 , (5)

where Cx and Cn are signal and noise covariance matrices (MPP is
a special case of this formula). BMSE is also a dense matrix.

In order to save on computation and storage, we seek a sparse
B. Sufficient sparsity would enable (4) to be computed rapidly. To
this end, we propose to use the sparse pseudoinverse of A,

spinv(A) = arg min ‖B‖1 subject to BA = In, (6)

Fig. 1: Illustration of sparse pseudoinverses (exact and approxi-
mate). The sparsity of the exact sparse pseudoinverse is 66 %, and
the sparsity of the approximate sparse pseudoinverse is 90%.
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Fig. 2: Frobenius norms for the MPP, the sparse pseudoinverse, and
the inverse of an n × n minor, for n = 50, and entries ∼ U([0, 1]).
Note that the Frobenius norm of the inverse minor has a different
scale, shown on the right. Besides, it varies substantially so that 20
realizations are not enough to indicate the true mean.

where ‖B‖1 denotes the entrywise `1 norm of B. The linear pro-
gram (6) is separable and can be solved by computing one row of
B at a time. We aim at minimizing the number of non-zeros in
spinv(A). This is in general a non-tractable problem, so we use
the standard linear relaxation with the `1 norm. The logic behind
computing spinv(A) is that the pseudoinverse has nm elements, but
we have only n2 constraints, which leaves us with nm−n2 degrees
of freedom. Intuitively, we expect to get a fraction nm−n2

nm
= 1− n

m
of zeros. For very tall matrices the savings can be considerable.

A legitimate question is whether (6) really produces a sparse
matrix? The answer is positive: In all the test cases, for both full
and sparse forward matrices, the number of zeros in spinv(A) was
at least nm − n2. To further sparsify the matrix, we can apply en-
trywise hard thresholding, thus sacrificing the inverting property and
computing an approximate sparse pseudoinverse,

[sspinvτ (A)]ij = ητ{[spinv(A)]ij}, (7)

with ητ (u) = u1|u|≥τ . Both pseudoinverses are illustrated in Fig.
1. To compare the MSE performance with the MPP, we need to
compute the Frobenius norm of spinv(A). It can be shown that the
output SNR of any such estimator depends on its Frobenius norm,
suggesting that the sparse pseudoinverse will do worse than MPP in
terms of MSE. This is summarized in the following simple proposi-
tion,

Proposition 1. Let At ∈ Rm×n, y = Atx + n and n be random
zero-mean noise such that E[nn>] = σ2Im. Then we have

E
[
‖x−By‖2

]
= σ2‖B‖2F (8)

6527



 

-2

-1

2

1

0

3 
Moore−Penrose
spinv

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

−10 0 10 20 30 40 50
−10

0

10

20

30

40

 

 
MP pinv
spinv
sspinv
Kaczmarz
rand Kaczmarz

2 6 10 14 16
IndexPercentage of elements

Input SNR [dB]

O
ut

pu
t S

N
R

 [d
B]

C
D

F

Original
Moore-Penrose
Spinv

Fig. 3: Output SNR and cumulative distribution functions (CDFs)
of matrix element magnitudes for Moore-Penrose pseudoinverse,
spinv(A), sspinv(A) and iterative methods when the forward ma-
trix is full. Lower-left figure shows a reconstruction example at
SNR = 10 dB. CDF threshold for sspinv was set to 0.05.

for any B ∈ Rn×m such that BAt = In.

Thus we cannot do better than the MPP since it minimizes the
Frobenius norm under the constraint BAt = In. How much worse
do we do? We have the following upper bound on the Frobenius
norm of the sparse pseudoinverse.

Proposition 2. Let At ∈ Rm×n, m>n . Then ‖spinv(At)‖F ≤√
nm‖A†t‖F .

In practice we observe far better results, as demonstrated in Fig.
2. For m=200, n=50, we have that ‖spinv(At)‖F ≈ 1.4‖A†t‖F .
We see that computing the solution by just inverting a full rank n×n
minor of At does substantially worse. In fact, it is worse than the
prediction of Proposition 2 for the spinv.

2.1. Example 1: Full Forward Matrix

Fig. 3 shows the performance of various reconstruction methods
with a dense forward matrix. We show results for spinv(A) and
sspinvτ (A). The threshold τ is computed from the empirical CDF
of absolute values of matrix entries shown in Fig. 3. The number
of non-zeros in sspinv is about two times lower than for spinv(A),
and four times lower than for MPP. As we will see in the next exam-
ple, spinv and sspinv are particularly interesting in the sparse matrix
case. We also include the well-known non-linear iterative methods—
Kaczmarz [14] and randomized Kaczmarz algorithm [15]. The num-
ber of iterations is selected to have the same operation count as for
the the application of sspinv(A). We sampled 50 realizations of A,
with entries aij ∼ U([0, 1]). For each matrix, a different random
input vector was generated, and 50 different iid Gaussian noise vec-
tors n were added to simulated measurements y = Ax. We can see
from Fig. 3 that at all but the lowest SNRs, the MPP performs the
best. But the cost of applying and storing spinv is 2 times lower, and
the cost of applying the sspinv 4 times lower. The spinv and sspinv
perform similarly up to 30 dB, and both variants of Kaczmarz algo-
rithm perform worse at all but the lowest tested SNRs. This example
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Fig. 4: Output SNR and cumulative distribution functions (CDFs)
of matrix element magnitudes for Moore-Penrose pseudoinverse,
spinv(A), sspinv(A) and iterative methods when the forward ma-
trix is sparse. Lower-left figure shows a reconstruction example at
SNR = 10 dB. CDF threshold for sspinv was set to 0.01.

shows clearly that the spinv and its sparser variant sspinv are useful
for overdetermined problems.

2.2. Example 2: Sparse Forward Matrix

In applications such as tomography we often encounter sparse for-
ward matrices. This makes the Kaczmarz algorithm attractive, es-
pecially for large systems. Surprisingly, we demonstrate that the
proposed scheme may outperform Kaczmarz even for sparse matri-
ces. We run the simulation like in Example 1, but with the fraction
of non-zeros in the forward matrix set to 0.03. This is the sparsity
of the model matrix At in our practical setup (but with smaller ma-
trix dimensions). The size of At was 202 × 101. From Fig. 4,
we see that the MPP performs consistently better than spinv at all
input SNRs by about 6 dB. Again, it requires at least twice the num-
ber of operations. The sparser sspinv(At) performs the same as
spinv(At) up to higher SNR values (around 40 dB). Note that the
sspinv performs better than in the dense case, which is suggested
by the CDF. But, sspinv requires 38 times less computation than
the MPP. Randomized Kaczmarz algorithm performs the best on the
average at low SNRs (below 15 dB), but its performance at higher
SNRs is notably inferior to all three linear reconstruction methods.
Conventional Kaczmarz has the worst average performance at all
tested SNRs.

3. UNDERDETERMINED CASE

The usefulness of spinv extends to the underdetermined case. We
first prove an important property of the sparse pseudoinverse which
justifies its application in iterative sparse recovery algorithms. This
property is satisfied by the MPP as demonstrated in [1]. Some obvi-
ous “sparse” formulations, such as inverting a minor, do not satisfy
it. We define spinv(A) for a “fat” A similarly to the tall case,

spinv(A) = arg min ‖B‖1 subject to AB = Im. (9)

With this definition, we can state the following unbiasedness result.
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Theorem 1. Let A ∈ Rm×n, m < n be a random matrix with iid
entries such that aij ∼ (−aij). Then E[spinv(A)A] = m

n
In.

To prove the theorem we need the following lemma,

Lemma 1. Let Π ∈ Rn×n be a permutation matrix, and Σ a modu-
lation matrix, Σ = diag(±1,±1, . . . ,±1). Then the following two
claims hold,

spinv(AΠ) = Π>spinv(A) (10)
spinv(AΣ) = Σ spinv(A). (11)

Proof of the lemma. We only prove the first claim. The second part
follows analogously.
Feasibility: (AΠ) · (Π>spinv(A)) = Aspinv(A) = Im.
Optimality: Suppose that there exists B such that (AΠ)B = Im
and ‖B‖1 < ‖Π>spinv(A)‖1. Since

(AΠ)B = Im = A(ΠB),

(ΠB) is a feasible point in minimization for spinv(A). But

‖ΠB‖1 = ‖B‖1 < ‖Π>spinv(A)‖1 = ‖spinv(A)‖1, (12)

which contradicts the `1-optimality of spinv(A). Therefore it must
be that spinv(AΠ) = Π>spinv(A).

Proof of the theorem. Since the matrix elements are iid, for any
permutation Π, A is distributed identically to AΠ. This implies
that functions of A and AΠ have the same distributions. Thus
spinv(A)A ∼ spinv(AΠ)AΠ, and we have that

E[spinv(A)A] = E[spinv(AΠ)AΠ] (13)

= E[Π>spinv(A)AΠ]. (14)

But note that this holds for any permutation, so by linearity of ex-
pectation we can write

E[spinv(A)A] = E

[
1

n!

∑
Π∈P

Π>spinv(A)AΠ

]

= E



C B · · · B
B C · · · B
...

. . .
...

B B · · · C


 =


c b · · · b
b c · · · b
...

. . .
...

b b · · · c

 ,
(15)

where P denotes the set of all n × n permutation matrices. We can
compute the value of c as follows:

Tr E[spinv(A)A] = E[Tr spinv(A)A] (16)
= Tr A spinv(A) = Tr Im = m. (17)

Since Tr E[spinv(A)A] = nc, we get c = m
n

.
To show that b = 0, we observe that A and AΣ have the same

distribution. Similarly to the previous part, we conclude that

E[spinv(A)A] = E

[
1

2n

∑
Σ∈M

Σspinv(A)AΣ

]
(18)

= diag(c1, c2, . . . , cn). (19)

But we already established that ci ≡ m
n

so indeed E[spinv(A)A] =
m
n

In.

Many input distributions satisfy the assumptions of the theorem,
and in particular iid Gaussian. Moreover, the reasoning can be re-
peated for a wider class of pseudoinverses. For example, nothing
changes in the proof if we replace ‖(·)‖1 by ‖(·)‖p.
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Fig. 5: Percentage of correct recovery with spinv IHT for different
matrix sizes, and different sparsities of the unknown vector.

3.1. Example 3: Iterative Hard Thresholding

As a proof-of-concept, we demonstrate initial results on sparse vec-
tor recovery for an IHT algorithm with the spinv. We use an ad hoc
choice of parameters without attempting to optimize them. A fair
comparison would involve searching for an optimal set of parame-
ters. See [19] for an extensive numerical effort to optimally tune a
number of popular iterative algorithms. Such large-scale tuning is
beyond the scope of the present contribution.

We used the following iterative algorithm for sparse recovery,

x̂k = ητ (x̂k−1 + n
m
spinv(A)(y −Ax̂k−1)), (20)

where ητ (·) is the hard thresholding operator defined as ητ (u) =
u1|u|≥τ . The threshold was set to retain the s largest magnitude
elements, where s is the number of nonzeros in x, assumed known.

Fig. 5 shows the percentage of correct recovery as a function of
the number of non-zeros for three different matrix sizes. For each
matrix size we sampled five forward matrices and for each matrix 50
random sparse input vectors. The results show that the phase transi-
tion occurs at sparsities two or three times lower than for optimally
tuned algorithms. This will only improve by finding the optimal pa-
rameter set for our algorithms. But the important point is that in
the feasible region, where this variant of IHT works, it requires less
computation.

4. CONCLUSION AND ONGOING WORK

We have introduced a novel way to compute a matrix pseudoinverse.
The proposed pseudoinverse is sparse, thus saving on computation
and storage. Unlike earlier approaches, we do not try to approx-
imate the Moore-Penrose pseudoinverse, but we compute an exact
pseudoinverse with as few non-zero entries as possible. We show
that for overdetermined problems it performs close to the Moore-
Penrose pseudoinverse in terms of MSE, while offering considerable
savings in terms of computation and storage. By further thresholding
the entries, we increase the computational savings, without sacrific-
ing the MSE performance at moderate SNRs. Perhaps surprisingly,
we show that in this scenario it outperforms Kaczmarz and random-
ized Kaczmarz algorithms, for both dense and sparse forward matri-
ces. For the underdetermined (compressed sensing) case, we have
proved that the sparse pseudoinverse yields an unbiased estimate
of the unknown vector. We demonstrate its applicability in itera-
tive algorithms, with less computation than in the conventional ap-
proaches. Further work involves obtaining tight theoretical bounds
on the reconstruction performance, and a detailed assessment of the
potential of the method in the underdetermined case.
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