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ABSTRACT

We propose a method to detect human footsteps from a vector-
quaternion signal acquired by a tri-axial geophone. The quaternion
generalized Gaussian distribution (QGGD) is derived to param-
eterize variations in the vector-quaternion signal using a shape
parameter, quantifying non-Gaussianity and quaternion augmented
covariance matrix, quantifying inter-channel correlation. The de-
tection of footsteps is then formulated as binary hypotheses tests
in terms of the parameters of the QGGD. The effectiveness of the
proposed metrics is evaluated on recorded seismic data.

Index Terms— vector-sensor, quaternion, footstep detection.

1. INTRODUCTION

Seismic sensors are increasingly used in open-field surveillance sys-
tems to monitor human activity. Conventional human footstep de-
tection methods include the use of single-axis geophones that em-
ploy either higher-order statistics such as kurtosis to quantify non-
Gaussianity or cadence to quantify the periodicity of a train of foot-
steps [1]. The use of tri-axial geophones, with three orthogonally
co-located sensors, have increased in recent years due to ease of
deployment compared to multiple single-axis geophones. Such a
vector-sensor has the inherent ability to detect 3-D particle velocity,
which in turn, preserves the composite polarization characteristics of
the impinging signal. Therefore, a single tri-axial geophone is able to
exploit the fact that sources such as footsteps impacting the Earth’s
surface, generate waves that propagate predominantly as Love and
Rayleigh modes giving rise to elliptical polarization [2].

Quaternions are hyper-complex numbers often used as a sig-
nal processing tool to express vector-sensor data [3]. In this work,
we propose a novel technique that employs quaternion theories to
model the diversity in the statistics of the data acquired from a sin-
gle tri-axial geophone. To achieve footstep detection, a quaternion
generalized distribution, which allows the analysis of both ellipti-
cally polarized footstep signal and unpolarized noise, is derived.
The probability density function (pdf) of this quaternion general-
ized Gaussian distribution (QGGD) parameterizes variations in the
vector-quaternion during the presence and absence of a polarized
source, viz., human footsteps. As will be described, we model the
peakyness of the multi-variate signal distribution using the shape pa-
rameter of the QGGD while the augmented covariance matrix of the
QGGD is used to quantify the inter-channel correlation of the tri-
axial geophone. We then formulate footstep detection as two binary
hypothesis tests corresponding to the shape parameter and degree-
of-Q-improperness of the augmented covariance matrix.

2. RELATION TO PRIOR WORK

As opposed to existing footstep detection techniques that employ
fourth-order statistics to quantify the peakyness and cadence to
quantify the periodicity of footsteps [1], the novelty of this work
lies in the use of quaternion distribution to quantify the dissimilarity
in the statistics between footsteps and noise vector-quaternion sig-
nal. As will be shown, increasing source-sensor distance as well as
multiple reflections from dispersive medium causes the spreading of
and reduces the peakyness of footstep signature, resulting in poor
detection performance of existing algorithms. However, we show
that exploiting the interchannel correlation through the use of impro-
priety of the quaternion-valued signal results in improved detection
of footstep signals. It is also important to note that real-world seis-
mic signals cannot be completely described using existing Gaussian
models [5] and hence we derive the quaternion generalized distribu-
tion as an extension of complex generalized distribution [6, 7]. The
derived QGGD allows the modelling of wide variety of quaternion-
valued random variables ranging from super-Gaussian, Gaussian
to sub-Gaussian with different degrees of properness and hence
can be extended to other applications such as oceanic studies using
hydrophones [8]. The current work also differs from our earlier
work [9] which quantified footstep signals using 3-D normalized
velocity trajectory.

3. VECTOR-QUATERNION FOR FOOTSTEP SIGNALS

The signal acquired by a tri-axial geophone at any time instant n can
be represented by a 3× 1 column vector

x(n) = [x1(n) x2(n) x3(n)]
T , (1)

where the first two elements define data corresponding to the two
horizontal channels while the third element corresponds to the ver-
tical channel. The three orthogonal channel data is well represented
as a vector-quaternion

qx(n) = x1(n)ı+ x2(n)j+ x3(n)κ, (2)

where ı, j and κ define the mutually orthogonal imaginary numbers
such that ı2 = j2 = κ2 = −1, ıj = κ, jκ = ı and κı = j. The
polar representation of qx(n) is given by

qx(n) = ρ(n)eζ(n)Θ(n), (3)

where

ρ(n) = ||qx(n)||2 =
√

x2
1(n) + x2

2(n) + x2
3(n) (4)
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Fig. 1. Distribution of data - (i) data acquired from the tri-axial geo-

phone and (ii) their distributions, for (a) noise (b) footstep segment.

defines the magnitude, ζ(n) = qx(n)/||qx(n)||2 is the eigenaxis
and Θ(n) = π/2 is the eigenangle [3].

Figures 1 (a) and (b) illustrate the orthogonal components of the
vector-quaternion signal for noise and a footstep, at a distance of 3 m
from the sensor, respectively, along with their corresponding distri-
butions. In the absence of a footstep, the distribution tends towards
Gaussianity while in its presence, the distribution approaches super-
Gaussianity. In addition, it has been described in [2] that footsteps
generate multiple modes of polarization that is dominated by ellip-
tically polarized Rayleigh waves. To illustrate the above, the time
evolution of the signals shown in Fig. 1 is plotted in Fig. 2 using
(1). As opposed to the absence of a footstep in Fig. 2(a), we note
from Fig. 2(b) that the 3-D data in the presence of a footstep traces
a wobbly orbit [10]. This elliptical polarization results in correlation
between the three channel data of the geophone when a footstep is
present. Along with this correlation, the difference in the signal dis-
tributions across orthogonal channels of the geophone, as observed
in Fig. 1, gives rise to impropriety in the vector-quaternion signal,
which is preserved in the quaternion augmented statistics. Thus
the presence of a footstep is reflected both as super-Gaussianity in
the individual axes as illustrated in Fig. 1, and as correlation be-
tween the axes of the vector-sensor as illustrated in Fig. 2. A vector-
quaternion representation of tri-axial data retains the non-linear rela-
tion between the orthogonal components, as against long-vector [4]
or component-wise processing. We therefore propose to derive and
employ quaternion generalized Gaussian distribution (QGGD) with
augmented statistics for footstep detection.

4. THE PROPOSED QUATERNION GENERALIZED
GAUSSIAN DISTRIBUTION

We derive the pdf for the QGGD which parameterizes variations in
the distribution pattern using a shape parameter and inter-channel
correlation using quaternion augmented covariance matrix. Footstep
detection can then be defined in terms of the parameters of this pdf.
We first describe the quaternion augmented statistics needed for the
derivation of the QGGD by defining the 4×1 quaternion augmented
vector [11] as

qax(n) = [qx(n) qıx(n) qjx(n) qκx(n)]
T , (5)

where qıx(n) = −ı � qx(n) � ı is known as the quaternion involution
with respect to ı, while � denotes the quaternion product. It is useful
to note that quaternion involution with respect to ı defines a rota-
tion by an angle π in the imaginary plane orthogonal to {1, ı}. The
corresponding quaternion augmented covariance matrix is evaluated

−0.05
0

0.05

−0.05

0

0.05
−0.05

0

0.05

x1x2

x 3

−0.05

0

0.05

−0.05

0

0.05
−0.05

0

0.05

x1
x2

x 3

(a) (b)

Fig. 2. 3-D plot of (a) noise-only and (b) footstep segment.

as [11]

C
a
qx = E

{
qax(n)(q

a
x)

H(n)
}
, (6)

where E{.} and the superscript (·)H are the expectation and Hermi-
tian operators, respectively. The quaternion augmented covariance
matrix Ca

qx and the tri-variate covariance matrix evaluated as

C = E
{
x(n)xT (n)

}
, (7)

are related by the identity [11]

xT (n)C−1x(n) = (qax)
H(n)(Ca

qx)
−1qax(n). (8)

The variable Ca
qx completely describes the second-order statistics of

the vector-quaternion signal. With the above definitions we are ready
to define the pdf for QGGD which is derived similar to its complex
counterpart CGGD [6] by representing the vector-quaternion in its
polar form using (3) with Θ(n) = π/2.

We start the derivation by noting that the shape of the vector-
quaternion distribution can be described by its magnitude ρ(n)
defined in (4). As described in [6], the magnitude of the CGGD
is described by a modified Gamma variate and hence, in a similar
manner, ρ(n) is assumed to be a generalized Gamma distribu-
tion (GGaD) with shape parameters (3/k, k) and unit scale, i.e.,
ρ(n) ∼ GGaD(3/k, k, 1). The pdf of ρ(n) is then given by [12]

p(ρ) = kρ2(n)e−ρk(n)
/
Γ(3/k), (9)

where Γ(3/k) =
∞∫
0

e−tt3/k−1dt is the Gamma function.

Similarly extending on [6], the eigenaxis ζ(n) is assumed to be
uniformly distributed on the surface of a sphere and described in
terms of an azimuth angle χ(n) ∼ U(0, 2π) and elevation angle
φ(n) ∼ U(0, π). Assuming ρ(n), χ(n) and φ(n) are independent,
the joint pdf (in polar form) is given by

p(ρ, χ, φ) = p(ρ)(1/2π)(1/π). (10)

We note that the vector-quaternion can alternatively be ex-
pressed in terms of the Cartesian tri-variate random variables using
x1(n) = ρ(n) sinφ(n) cosχ(n), x2(n) = ρ(n) sinφ(n) sinχ(n)
and x3(n) = ρ(n) cosφ(n) where xi(n), i = 1, 2, 3 are the re-
ceived signals defined in (1). The joint pdf of the Cartesian tri-variate
data in terms of its polar representation is then given by

p(x1, x2, x3) =
1

|J|p
(
ρ, χ, φ

)
, (11)

such that ρ =
√

x2
1 + x2

2 + x2
3, χ = tan−1

(
x2/x1

)
and φ =

tan−1
(
x3/

√
x2
1 + x2

2

)
, where we have temporarily omitted the
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Fig. 3. Histogram plot of (a) sinφ and (b) φ ∼ U(0, π).

time dependency ‘(n)’ for compactness in notation and

|J|=
∣∣∣∣∣∣
sinφ cosχ−ρ sinφ sinχ ρ cosφ cosχ
sinφ sinχ ρ sinφ cosχ ρ cosφ sinχ

cosφ 0 −ρ sinφ

∣∣∣∣∣∣=ρ2 sinφ (12)

is the determinant of the Jacobian matrix J. Substituting (9), (10)
and (12) into (11), the pdf of the generalized Gaussian distribution
is obtained as

p(x1, x2, x3) =
1

2π

1

π

1

ρ2 sinφ

kρ2

Γ(3/k)
e−(x2

1+x2
2+x2

3)
k/2

=
c

π2Γ(3/2c) sinφ
e−(x2

1+x2
2+x2

3)
c

(13)

where c = k/2. Figure 3(a) shows the distribution of sinφ corre-
sponding to a uniform distribution of elevation angle φ in Fig. 3(b)
where we observe that sinφ = 1 occurs with the highest probability.
With sinφ ≈ 1 the generalized Gaussian pdf is reduced to

p(x1, x2, x3) ≈ ce−(x2
1+x2

2+x2
3)

c
/
(π2Γ(3/2c)). (14)

For c = 1, the pdf p(x1, x2, x3) degenerates to a Gaussian distribu-
tion which is analogous to the CGGD for complex signals [6].

Since the three orthogonal sensors of the geophone are co-
located, we assume that E{x2

1} = E{x2
2} = E{x2

3} and compute
the second-order moment as

ξ(c)�E{x2
1}=

∞∫
−∞

∞∫
−∞

∞∫
−∞

x2
1p(x1, x2, x3)dx1dx2dx3

=

π∫
0

2π∫
0

∞∫
0

ρ2sin2φ cos2χ
c e(ρ

2)c(ρ2 sinφdρdχdφ)

π2Γ( 3
2c
) sinφ

=
Γ(5/c)

2Γ(3/2c)
. (15)

Similar to the approach in [6], we normalise the signal xi(n) with
ξ(c) to have unit variance using the linear transform v(n) = Dx(n),

where D =
√

1/ξ(c)I3 and I3 is a 3 × 3 identity matrix. This
transform is applied to (14) to obtain

p(v) =
1

|D|p(D
−1v(n)) = β(c)e−ξ(c)[vT (n)v(n)]c , (16)

where p(D−1v(n)) = p(x1, x2, x3), β(c) = c Γ(5/c)

(2π2Γ(3/2c)2)
and

E{v(n)vT (n)} = I3 for c > 0.

We express v(n) as an augmented quaternion vector qav(n) us-
ing (5) and the corresponding quaternion pdf is derived using (8) as

p(qav) = β(c)e−ξ(c)[(qav)Hqav]c . (17)

In order to extend this pdf for any arbitrary quaternion augmented
vector qa with quaternion augmented covariance matrix Ca

q, we ap-

ply the transformation qa = Ta
qq

a
v, where Ta

q =
√

Ca
q. Since the

diagonal elements of Ca
q are real, we obtain the pdf of the QGGD as

p(qa) =
(√

|Ca
q|
)−1

β(c)e−[ξ(c)((qa)H (Ca
q)−1qa)]c , (18)

where qa and Ca
q are defined similar to (5) and (6) respectively.

The parameter c defines the shape of the vector-quaternion dis-
tribution while Ca

q is the covariance matrix which preserves the
inter-channel correlation between the orthogonal components of the
vector-quaternion. We next fit overlapping frames of the vector-
quaternion signal to the derived pdf and the presence of footsteps is
detected through the estimation of c and Ca

q. The maximum like-
lihood estimates of these parameters derived using the QGGD pdf
do not result in a closed form expression and hence we make use of
numerical methods for their estimation.

4.1. Non-Gaussianity Measure

The shape of the vector-quaternion distribution, as illustrated in
Fig. 1, is reflected in the c parameter of the QGGD in (18). It is es-
timated from the magnitude ρ(n), which follows a GGaD pdf given
in (9). A heuristic method [13] that maps the GGaD pdf to a Gamma
distribution using the power transformation identity, i.e., when
ρ(n) ∼ GGaD(3/2c, 2c, 1) then ρ2c(n) ∼ Gamma(3/2c, 12c),
is used to estimate c. This routine iteratively loops through val-
ues of ĉ ∈ [0.1, 2] to estimate c as the best chi-square fit between
ρc(n) and an empirical Gamma distribution with the same parame-
ters [13]. Thus ĉ is expected to be approximately equal to unity for
Gaussian distributed noise and less than unity for super-Gaussian
signal. Detection of footstep signals is therefore expressed as a
binary hypothesis test using ĉ as

H0 : ĉ ≈ 1 for Gaussian noise

H1 : ĉ < 1 for Super−Gaussian footstep signal.

4.2. Improperness Measure

The augmented covariance matrix of the QGGD derived in (18) is es-
timated using a frame of N consecutive augmented quaternion vec-
tor defined using (5), as

Ĉa
q =

1

N

N−1∑
n=0

qa(n)q
H
a (n). (19)

The estimated Ĉa
q has a structure

Ĉa
q =

⎡
⎢⎢⎣

Ĉqq Ĉqqı Ĉqqj Ĉqqκ

Ĉqıq Ĉqıqı Ĉqıqj Ĉqıqκ

Ĉqjq Ĉqjqı Ĉqjqj Ĉqjqκ

Ĉqκq Ĉqκqı Ĉqκqj Ĉqκqκ

⎤
⎥⎥⎦ , (20)

where the off-diagonal elements are the pseudo-covariances

Ĉqqı =
1

N

N−1∑
n=0

q(n)(qı)H(n). (21)

The augmented covariance matrix quantifies the correlation between
the orthogonal axes of the geophone which is dependent on the sig-

nal power. The matrix Ĉa
q is Q-proper if and only if the pseudo-

covariances with respect to ı, j and κ vanish and Q-improper if none
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Fig. 4. Plot of (i) z-axis signal, (ii) cumulative kurtosis Kc, (iii)

shape parameter ĉ and (iv) ||ΦQ||, for radial walk from 9 m to 30 m.

of them vanish [14, 15]. Random Gaussian noise with comparable
power in all the three channels of the geophone results in an unpo-
larized Q-proper diagonal structure since there exists no correlation
between the orthogonal axes. However, as seen in Fig. 2(b), footstep
signals are expected to be Q-improper due to the presence of ellip-
tically polarized signals and the amount of correlation is described
using the degree-of-Q-improperness (DOI). The locally most pow-
erful invariant test [16] is used to quantify the DOI and is defined as
the Frobenius norm ||ΦQ|| of the Q-coherence matrix

ΦQ = (C̃a
q)

−1/2
Ĉa

q(C̃a
q)

−1/2, (22)

where Ĉa
q is the estimated augmented matrix and C̃a

q is the aug-
mented matrix with a Q-proper diagonal structure.

In practical scenarios, perfectly unpolarized Q-proper signals
are difficult to obtain due to the presence of standing waves, earth
vibrations in the distant environment and differences in the channel
gain [9]. In this work we define C̃a

q = I4 to evaluate ||ΦQ|| by pre-
serving the energy of the vector-quaternion signal. The evaluated
||ΦQ|| is expected to be high in the presence of a polarized footstep
and low in the absence of it. Footstep detection can therefore be
defined as a binary hypothesis test using DOI as

H0 : ||ΦQ|| < γ for Q−Proper noise

H1 : ||ΦQ|| > γ for Q−Improper footstep signal, (23)

where γ is a threshold. Since footsteps are intermittent and impul-
sive, the noise statistics is estimated by evaluating the DOI metric
over long-time window, denoted as DOIn. An adaptive detection
threshold is evaluated as

γ(l) = η ×DOIn, (24)

where the scaling parameter η > 0 regulates the trade-off between
the probability of detection and false alarm.

5. EXPERIMENTAL RESULTS

We analyse the performance of the proposed metrics on footsteps
recorded by a tri-axial geophone for a person walking radially away
from the sensor from 2 m to 30 m and for a person marching at
fixed distance of 11 m from the sensor. These experiments evaluate
the robustness of the metrics under practical conditions of increas-
ing source-sensor distances and presence of standing waves. Experi-
ments were conducted on a grassy field with a single person walking
with hard sole shoes. The proposed metrics ĉ and ||ΦQ|| are com-
pared with cumulative kurtosis Kc, which is evaluated as the sum
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Fig. 5. Plot of (i) z-axis signal, (ii) Kc, (iii) shape parameter ĉ and

(iv) ||ΦQ||, for stationary footsteps at 11 m from sensor.

of kurtosis of the three-channel data [9]. The metrics are evaluated
using a sliding window of length 200 ms with 50% overlap on data
resampled to 8 kHz.

Figure 4(i) shows the signal acquired by the x3-component of
the geophone for the radial-walk experiment. As the source moves
away from the sensor the leptokurtic nature of the footstep impulse
reduces owing to longer propagation in the medium. This directly
reflects in the deterioration of the detection performance of Kc il-
lustrated in Fig. 4(ii), especially for source-sensor distances greater
than 25 m. Although the estimated ĉ plotted in Fig. 4(iii) quantifies
the super-Gaussianity of the signal, it shows superior distinction of
footstep segments than Kc at farther source-sensor distances. The
DOI metric ||ΦQ|| plotted in Fig. 4(iv) shows consistent detection of
footsteps at farther distances and does not show any spurious peaks
as the value of the metric corresponding to footstep segment is dis-
tinctly higher to that of noise.

Figure 5 plots the detection metrics for stationary footsteps in
the presence of a bus in the background. The existence of standing
waves along with increased noise level results in the spread of the
source impulse. This causes inconsistency in both Kc and ĉ whereas
the corresponding DOI metric is consistent even in the presence of
noise. We define detection rate Rd and false alarm rate Rfa as

Rd =
no. of footsteps detected

total no. of footsteps
,Rfa =

no. of false detections

total no. of footsteps
. (25)

The detection performance averaged over thirty experiments involv-
ing random, radial and zig-zag walk with η = 0.98 for ||ΦQ|| is
compared in Table 1. From the results, we note that the DOI metric
||ΦQ|| outperforms Kc and ĉ with improved detection of footsteps at
farther source-sensor distances for both walking patterns.

Table 1. Comparison of Detection Performance

Walking Style Distance Kc ||ΦQ|| ĉ
Rd Rfa Rd Rfa Rd Rfa

< 10 m 0.99 0.005 0.98 0.005 0.93 0.2
Stationary Marching 10-20 m 0.7 0.06 0.95 0.08 0.8 0.17

< 10 m 1 0 1 0 1 0
Radial Walking 10-30 m 0.9 0.1 0.94 0.02 0.8 0.15

6. CONCLUSION

The QGGD was derived to statistically define the diversity in the
vector-quaternion signal using a shape parameter and quaternion
augmented covariance matrix and used for footstep detection. We
show that the degree-of-Q-improperness effectively quantifies the
correlation in the tri-axial data and thus performs better than the
metrics based on the shape of the signal distribution.
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