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ABSTRACT

This paper deals with the estimation of the arrival times of
overlapping ultrasonic echoes. We focus on approaches based
on discrete sparse deconvolution. Such methods are limited
by the time resolution imposed by the model discretization,
which is usually considered at the data sampling rate. In or-
der to get closer to the continuous-time model, we propose
to increase the time precision by introducing an up-sampling
factor in the discrete model. The problem is then recast as a
Multiple Input Single Output (MISO) deconvolution problem.
Then, we propose to revisit standard sparse deconvolution al-
gorithms for MISO systems. Specific and efficient algorith-
mic implementation is derived in such setting. Algorithms
are evaluated on synthetic data, showing improvements in ro-
bustness toward discretization errors and competitive compu-
tational time compared to the standard approaches.

Index Terms— deconvolution, sparse approximation,
MISO systems, ultrasonic data.

1. INTRODUCTION

Estimation of arrival times and amplitudes of superimposed
echoes from noisy observations arises in many applications
such as RADAR, seismic exploration, ultrasonic nondestruc-
tive testing (NDT) or medical imaging. In NDT for exam-
ple, a known waveform is sent through a material, and reflec-
tion occurs at each impedance change. The precise estima-
tion of the echo parameters then leads to the localization and
the characterization of the geometrical properties (including
flaws) of the inspected object. Consider the signal model:

y(t) =
∑
i

aih(t− ti) + e(t), (1)

where h(t) is the a priori known waveform and e(t) stands for
additive noise. The purpose is then to estimate the parameters
ti and ai from sampled data y = [y(nTS)]n=1,...,N , where
TS is the sampling period. This can be a hard task when the
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echoes overlap, creating constructive or destructive interfer-
ences. It is particularly critical for ultrasonic data, where the
waveform h(t) has generally a strongly oscillating shape.

Many approaches aim to identify ai and ti in Eq. (1) as
continuous parameters. Cross-correlation methods [1] are
computationally simple but show poor performance when
echoes overlap. The finite rate of innovation theory [2] of-
fers exact reconstruction provided that the sampling rate
is high enough, although in a rather different context than
ours – in particular, specific sampling kernels h(t) are con-
sidered. Related subspace-based methods have also been
widely used in this context, even though they are better suited
to multiple snapshot data in order to yield robust covari-
ance estimates [3]. For ultrasonic NDT, parametric methods
were proposed where (ai, ti) are jointly estimated together
with shape parameters for each echo, by minimizing a least-
squares distance [4]. This is hence a nonlinear approach that
can be very sensitive to model errors and local minima.

On the other hand, extensive research has been carried
out on deconvolution methods. Indeed, Eq. (1) formulates a
continuous convolution :

y(t) = (h∗x)(t)+e(t) =
∫ +∞

−∞
h(τ) x(t−τ)dτ+e(t), (2)

where x(t) is a spike train with time positions ti and ampli-
tudes ai. Many deconvolution methods then consider a dis-
cretized version of the right-hand term in Eq. (2), which yields
a discrete and linear inverse problem y = Hx+ e. Regular-
ization is then addressed by introducing a sparsity constraint
on the sequence x. By exploiting linearity with appropriate
regularization techniques, such approaches have shown sat-
isfactory results in the presence of strong overlapping and
noise [5]. However, the time resolution is obviously limited
by the discretization precision, that usually corresponds to the
data sampling frequency.

In this paper, we show that it is practically possible to in-
crease the time resolution in sparse deconvolution algorithms
by an up-sampling approach. This is relevant to estimate
times of flight, which are continuous values. We propose to
revisit well-known sparse approximation algorithms in this
context, based on greedy strategies [6, 7, 8], and on `0 [9]
and `1-norm penalization [10, 11]. Section 2 establishes the
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discrete up-sampled convolution model, which is recast as a
MISO system. Based on the resulting structure of matrix H,
Section 3 studies implementation issues of sparse approxima-
tion for up-sampled deconvolution and, more generally, for
the estimation of sparse inputs in MISO systems. From syn-
thetic data, a comparison between standard and up-sampled
deconvolution is conducted in Section 4. Algorithms are also
compared in terms of computational efficiency and perfor-
mance through Monte-Carlo simulations. Conclusions are fi-
nally given in Section 5.

2. UP-SAMPLED CONVOLUTION AS A MISO
SYSTEM

Consider the continuous-time convolution model (2), where
available data is sampled at period TS : we note yn = y(nTS).
Up to our knowledge, all the works in the field of deconvolu-
tion consider a discrete convolution model, that reads:

yn =

M−1∑
m=0

hm xn−m + en. (3)

That is, the right-hand term in Eq. (2) is sampled at the data
sampling rate : hn = h(nTS) and xn = x(nTS). Note that
the error term en should now also include model errors due
to inexact discretization. Let column vectors y, h, x and
e collect the samples of yn, hn, xn and en, respectively.
Eq. (3) then reads y = Hx + e where H is a convolu-
tion matrix, whose n-th line is a delayed version of the re-
versed sequence [hM−1, . . . , h0] with n − 1 zeros inserted
at the beginning. The Toeplitz structure of H can be ex-
ploited to perform efficient computations with Fast Fourier
Transform (FFT) algorithms [12]. Note that such definition
of H corresponds to the post-windowing boundary assump-
tion, for which x = [x−M+2, . . . , x0, x1, . . . , xN ]T , where
superscript T denotes the transposition.

However, in many applications, the data sampling rate
is limited and such discretization may not be appropriate.
This is particularly true for sparse deconvolution, since the
searched sequence is not band-limited. Hence, it may be of
interest to consider that h and x in Eq. (2) are discretized at
rate TS/K with K integer. The discrete model becomes:

yn =

P−1∑
p=0

hpxnK−p + en (4)

with hp = h(pTS/K), xp = x(pTS/K) and P = KM . Let
column vectors h and x collect the samples hn and xn. In
matrix form, model (4) reads y = H x + e where each line
of H is formed by the reversed sequence

[
hP−1 . . . h0

]
, with

(n− 1)K zeros inserted at the beginning of line n. H is now
an N ×KN matrix and is no more Toeplitz. One can show,
however, that model (4) also reads as the sum of K discrete
convolutions:

yn =

K∑
k=1

(
M−1∑
m=0

hkm xkn−m

)
+ en, (5)

where hk, k = 1 . . .K are K sub-waveforms with sampling
period TS , such that hkm = h

(
(k − 1)TS/K +mTS

)
. Simi-

larly, xk are the corresponding sparse sub-sequences with N
points. The matrix form hence reads y =

∑K
k=1 H

k xk + e,
where Hk are Toeplitz sub-matrices obtained by taking every
K columns of H. In other words, it can be seen as a spe-
cific MISO system, as illustrated in Figure 1, where the K
filters are obtained by sampling the continuous-time impulse
response h(t) at period TS , with K subsample time shifts
(k − 1)TS/K, k = 1 . . .K. In the following section, we
describe the algorithmic implementations of sparse deconvo-
lution for generic MISO systems.
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Fig. 1. Diagram of a MISO system.

3. MISO DECONVOLUTION WITH SPARSE
APPROXIMATION METHODS

Sparse approximation has become an important field of re-
search in the past fifteen years [11]. It aims at approximating
the data y with Hx where x is a sparse sequence1, that is,
x has only few non-zero components. We focus on imple-
mentation issues for five acknowledged sparse approximation
methods applied to MISO deconvolution:

• Three greedy algorithms are implemented, namely, by
increasing complexity: Matching Pursuit (MP) [6], Or-
thogonal Matching Pursuit (OMP) [7] and Orthogonal
Least Squares (OLS) [8]. Each iteration of such pro-
cedures comprises the selection of one component im-
proving the data approximation, and the update of the
solution as a combination of the selected components.

• The Single Best Replacement algorithm was recently
introduced in [9] and performs local minimization of
the penalized least-squares criterion:∥∥y −Hx

∥∥2 + µ‖x‖0 (6)

where ‖x‖0 is the number of non-zero components in
x. This is a combinatorial problem, and local explo-
ration is performed by moves affecting only one com-
ponent. Each iteration either adds or removes one el-
ement in the current support, and the replacement is
selected which most decreases criterion (6).

1Notation Hx is used here for homogeneity, although most works on
sparse approximation do not consider convolution-based operators.

6512



• Last, `1-norm penalization is considered by minimizing∥∥y −Hx
∥∥2 + µ

∑
`

|x`|. (7)

Optimization is performed with the homotopy continu-
ation principle described in [10, 13], which shows for-
mal similarities with greedy methods and even more
with SBR since it performs removal moves as well.
This algorithm will be referred to as `1-HC.

The reader is referred to the corresponding references for de-
tailed descriptions of the algorithms. Note that such algo-
rithms were compared for deconvolution purposes in [14], but
only within the standard convolution setting of Eq. (3).

The selection steps for MP and OMP mostly amount to
computing matrix products HT ·. For MISO systems, using
notations of Section 2, such a product is decomposed into
K products HT

k · with Toeplitz matrices Hk. These are ac-
tually cross-correlations, which can be implemented in the
frequency domain using two FFTs and one inverse FFT (in
dimension N ) [12]. In practice, the Discrete Fourier Trans-
forms of all hk are computed before the algorithm starts. One
selection step is then executed byK+1 FFTs. Hence, the cor-
responding cost increases linearly with K. For MP and OMP,
the update of the residue is identical to the standard versions.
For OMP, it requires the inversion of matrix HT

?H?, where
subscript ? indexes the active columns of H. In the proposed
implementation, the Cholesky factorization of HT

?H? is up-
dated at each iteration at low cost, since one iteration only
performs rank-one modifications to such matrix. Doing so,
system inversions amount to two triangular system inversions
of complexityO(i2) where i is the number of active elements.

Efficient implementations of OLS and SBR require ex-
tensive access to elements of the Gram matrix HTH – more
precisely, to HT

?H◦, where subscript ◦ indexes the non-active
columns of H at a given iteration, see for example implemen-
tation details given in [9]. For MISO systems, HTH is com-
posed of blocks HT

kH`, that are Toeplitz matrices with ele-
ments corresponding to the cross-correlation between hk and
h`. Hence, the pre-computation of the K(K + 1)/2 distinct
cross-correlation sequences – also in the Fourier domain – be-
tween the K impulse responses gives all useful information
about the Gram matrix.

`1-HC minimizes criterion (7) by gradually decreasing the
value of parameter µ [10, 13]. At iteration j, all possible val-
ues of µ producing a change in the sign of the current solution
are computed, among which the next value µ(j) is selected as
the maximal one that satisfies µ(j) < µ(j−1). Such com-
putations are indeed similar to those of previously described
greedy methods (see for example [13] for explicit equations).
More precisely, addition tests require the computation of two
matrix products HT ·, that is, 2(K + 1) FFTs. Removal tests
amount to two system inversions with matrix HT

?H?, per-
formed by Cholesky factorization as previously explained.

All algorithms require the pre-computation of the prod-
ucts HT

k y, which are performed using FFT. To sum up, the
complexity of each iteration of MP, OMP and `1-HC is pro-
portional to K. On the contrary, OLS and SBR require the
pre-computation of (K + 1)2 FFTs, but their core computa-
tions remain roughly constant as K increases.

4. SIMULATION RESULTS

4.1. Deconvolution of a complex signal

We consider the data shown in Figure 2, generated from
Eq. (1) with 8 echoes, randomly distributed on the continuous
time axis. Consequently, none of them falls exactly on any
restoration grid. The waveform is a 5 MHz sine wave with a
Gaussian envelope [4]. The data is sampled at 25 MHz and
corrupted by 10 dB SNR Gaussian noise. Three overlapping
problems occur at approximately 1, 4.5 and 8.5µs.

Deconvolution is performed with standard algorithms
(i.e., K = 1) and using up-sampling with K = 6. Greedy
methods are stopped when the norm of the approximation
error ‖y −Hx‖2 becomes lower than a given threshold, de-
pending on the noise power (see for example [14]). Similarly,
the regularization parameter for SBR and `1-HC is tuned2 in
order to get solutions with similar approximation errors. All
the standard methods fail to correctly locate the echoes on
any of the three problems and many spike locations and signs
are badly estimated. The up-sampled deconvolution leads to
more satisfactory results. In particular, the erroneous behav-
ior of all algorithms at 8.5µs has been corrected for K = 6.
OLS and SBR with K = 6 also solve the overlapping prob-
lem at 1µs. However, they still fail to correctly locate the
two close echoes at 4.5µs, where estimation results are even
slightly worse than with K = 1. This is due to the subop-
timal nature of the greedy algorithms, that reached a local
minimum of the data misfit criterion. The `1-norm decon-
volution achieves correct location of the two close echoes at
4.5µs and at 8.5µs. On the other hand, it produces spurious
small spikes and double spikes, which are typical artifacts of
`1-norm-based sparse approximation.

4.2. Monte-Carlo simulations

We now compare algorithmic performances with Monte-
Carlo simulations. The deconvolution algorithms are run
for 2000 synthetic data sets, containing 15 echoes, with the
same waveform, SNR and total duration as the data used in
Figure 2. The signals therefore contain strongly overlapping
echoes. Algorithms are tuned as explained in § 4.1.

Since true spikes do not belong to any of the discrete
reconstruction grids, estimation errors are computed using
a distance between two spike trains inspired by the work

2Note that the `1-norm introduces bias on amplitude estimation. Thus, for
`1-HC, amplitudes are corrected before computing the approximation error.
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Fig. 2. Deconvolution example from synthetic data. Top left: waveforms used for deconvolution with K = 6. Top right: data
(–) and true spikes (◦). Middle: results with K = 1. Bottom: results with K = 6. True spikes (◦) and estimated spikes (�).

in [15]: amplitudes are first binarized to ±1 in order to give
the same importance to all detections. Then, the spike trains
are convolved with a double-side exponential kernel e−|t|/τ ,
with τ = TS , producing slight spike spreading. Finally,
the `2-norm between the two convolved spike trains is com-
puted. Figure 3 (top) shows such estimation errors obtained
by the implemented algorithms for different values of the
up-sampling factor K. As can be expected, errors decrease
with K. For example, using K = 4 yields an error reduc-
tion of about 25% with respect to K = 1, except for `1-HC.
The relative performances of the different algorithms are
also in accordance with their complexity, that is, MP has the
greater error, followed by OMP, OLS and SBR. The results
for `1-HC appear to be less sensitive to up-sampling, and
show the worst performance among all methods for K ≥ 2.
Most of this behavior can be explained by the nature of the
spike distance, which strongly penalizes the false detections
of small amplitude spikes, inherent to `1-norm penalization.
On the contrary, other simulation showed that `1-HC yields
the smallest errors using a distance without amplitude bina-
rization. Note also that for K ≥ 6, error reduction becomes
negligible. This can be explained by the intrinsic variance on
the time delay estimation due to the presence of noise [1].

Central Processing Unit (CPU) times are evaluated with
Matlab running on a personal laptop computer with 4 Go
RAM and double-Core CPUs clocked at 2.5 GHz. Results
are plotted in Figure 3 (bottom). MP and OMP are the fastest
and their cost increase linearly with K, which is coherent
with the analysis in Section 3. OLS, followed by SBR, are
more costly, which is in accordance with their increased
complexity. We note that most CPU time required by these
algorithms is due to pre-computations, whose cost increase
roughly quadratically with K (see Section 3). Note that the
cost of `1-norm deconvolution is the highest one, which is
also in accordance with the results in Figures 2 and 3 (top):

`1-HC estimates show more spikes than other algorithms,
hence their computations require more iterations.
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Fig. 3. Estimation errors (top) and computational costs (bot-
tom) for different algorithms versus the up-sampling fac-
tor K. Results are averaged on 2000 random realizations.

5. CONCLUSION

An up-sampling approach for sparse deconvolution has been
proposed for the estimation of time delays in typical ultra-
sonic NDT data. A model was introduced based on a finer
time discretization of the convolution model than usual ap-
proaches. The model was recast has a MISO system, for
which well-known sparse approximation methods were stud-
ied and computationally optimized for deconvolution. Syn-
thetic simulations revealed the efficiency of up-sampled de-
convolution to estimate times of arrival in presence of noise,
even for strong overlapping. Computation costs were evalu-
ated that confirmed the implementation efficiency. In particu-
lar, increasing the up-sampling factor only produces a reason-
able increase of the CPU time.
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