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ABSTRACT

The need for fast on-line algorithms to analyze high data-rate
measurements is a vital element in production settings. Given
the ever-increasing number of data sources coupled with in-
creasing complexity of applications, and workload patterns,
anomaly detection methods should be light-weight and must
operate in real-time. In many modern applications, data arrive
in a streaming fashion. Therefore, the underlying assumption
of classical methods that the data is a sample from a stable dis-
tribution is not valid, and Gaussian and non-parametric based
methods such as the control chart and boxplot are inadequate.
Streaming data is an ever-changing superposition of distribu-
tions. Detection of such changes in real-time is one of the
fundamental challenges. We propose low-complexity robust
modifications to the conventional Tukey boxplot based on fast
highly efficient robust estimates of scale. Results using syn-
thetic as well as real-world data show that our methods out-
perform the Tukey boxplot and methods based on Gaussian
limits.
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1. INTRODUCTION

Robust statistics originates from the pioneering contributions
of Tukey [1], Huber [2], and Hampel [3]. Roughly speak-
ing, robustness means stability of statistical inferences under
departures from the accepted distribution models. Although
robust statistical procedures involve highly refined asymptotic
tools, they exhibit satisfactory behavior within small samples
and therefore are quite useful in real-world applications.

Concurrently, in parallel with robust statistics, practical
methods for analyzing data evolved known as Exploratory
Data Analysis (EDA). These days it is more popularly alluded
to as data mining. A significant feature of EDA is that it does
not assume an underlying probability distribution for the data
which is typical in classical statistical methods and therefore
is flexible in practical settings.

This paper presents new results in robust data analysis
technologies, providing alternatives to the boxplot technique.
The univariate Tukey boxplot summarizes the characteristics
of a data distribution allowing for a quick visual inspection of
streams of data over windows. Despite being a simple data
analysis tool, it concisely summarizes information about the
location, scale, asymmetry, tails, and outliers in the data dis-
tribution. In our study, we concentrate on visualization of
distribution tails and on detection of outliers in the data.

The remainder of the paper is organized as follows. In
Section 2, the state of the art in boxplot techniques is pre-
sented. In Section 3, two new robust versions of the Tukey
boxplot based on the highly efficient robust estimates of scale
are proposed. In Section 4, several new rules for detection of
outliers based on the proposed robust boxplots are introduced
and examined on the contaminated Gaussian data as well as
on real-life data. In Section 5, conclusions are drawn.

2. STATE OF THE ART

A univariate boxplot [4] is specified by five parameters: the
two extremes, the upper UQ (75th percentile) and lower LQ
(25th percentile) quartiles and the median (50th percentile).
The lower and upper extremes of a boxplot are defined as

xL = max

{
x(1), LQ−

3

2
IQR

}
,

xU = min

{
x(n), UQ+

3

2
IQR

}
. (1)

Different streams of data are compared via their respec-
tive boxplots in a quick and convenient way. It is a common
practice to identify points which are located beyond the ex-
tremes (maximum and minimum) as outliers, and mark them
in the corresponding boxplots.

Many modifications have been proposed as improvement
to the standard boxplot. Notable among them are [5] which
displays confidence intervals around the median. This is es-
pecially useful to distinguish difference between medians of
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different data windows. Another variant is due to [6] which
incorporates the density information in addition to the five
descriptive parameters in the the standard boxplot. Other so-
lutions include a histplot, in which the underlying probabil-
ity density function is estimated at the median and the two
quartiles with its modification vaseplot [7]. And lastly, a box-
percentile plot, where information regarding the empirical cu-
mulative data distribution is used in conjunction with the box-
plot [8] and a violin plot, which is a combination of a boxplot
with a box-percentile [9].

The alternatives to the classical Tukey boxplot seek to ex-
ploit additional information about the underlying data distri-
bution. However, it comes at the cost of computational com-
plexity. In this paper, we propose a modification by incorpo-
rating a highly efficient robust estimate of scale, while main-
taining low complexity structure of the Tukey boxplot.

3. NOVEL BOXPLOTS BASED ON FAST HIGHLY
EFFICIENT ROBUST ESTIMATES OF SCALE

3.1. The MAD-Modification of the Tukey Boxplot

Although the Tukey boxplot is a widely used tool for anomaly
detection, it can be modified for better performance. For es-
timating the width of the central part of a data distribution,
(the box part of the boxplot), the sample interquartile range
(IQR) can hardly be improved, since it is a natural choice for
representation of the half of the data distribution mass. The
remaining possibilities of improving most refer to the choice
of robust estimates of scale used for visualization of tail ar-
eas and anomalies in the data (the boxplot lower and upper
extremes). In this case, the sample interquartile range IQR
as a robust estimate of scale is not the best choice as its ef-
ficiency and robustness can be considerably improved [10].
Efficiency is the ratio of variances of a baseline and proposed
estimates. The baseline typically is the variance under normal
assumptions as it is still successfully and ubiquitously used in
practice of data analysis [11]. Robustness of an estimate is
measured by the gross error breakdown point 0 ≤ ε∗ ≤ 0.5,
which is the largest fraction of gross errors (anomalies) in the
data that still keeps the bias of an estimator bounded [10]. For
instance, the breakdown point of the sample standard devia-
tion is ε∗ = 0 – it means that this estimate is not robust at all,
whereas the interquartile range has the moderate value of the
breakdown point ε∗ = 0.25 and the median absolute devia-
tion MADn x = medi |xi −medx| has the maximal value
ε∗ = 0.5.

Since the interquartile range is less resistant to outliers
than the median absolute deviation MADn x, a more robust
rule for constructing the boxplot extremes can be given by

xL = max{x(1), LQ− kMADMADn},

xU = min{x(n), UQ+ kMADMADn}, (2)

where kMAD is a threshold coefficient chosen from additional
considerations.

3.2. Fast Highly Efficient Robust Estimates of Scale

Although the median absolute deviation MADn is a highly
robust estimate of scale with the maximal value of the break-
down point ε∗ = 0.5, its efficiency is only 0.37 at the nor-
mal distribution. In [12], a highly efficient robust estimate of
scale Qn has been proposed: it is close to the lower quartile
of the absolute pairwise differences |xi − xj |, and it has the
maximal breakdown point 0.5 as forMADn but much higher
efficiency 0.82. The drawback of this estimate is its low com-
putation speed. The computation of Qn requires an order of
greater time than of MADn.

In [13], an M -estimate of scale denoted by S∗
n whose in-

fluence function is approximately equal to the influence func-
tion of the estimate Qn is proposed

n∑
i=1

χ (xi/S
∗
n) = 0, (3)

where the score χ(x) = 1/
√
π
(
1−
√

2 exp(−x2/2)
)
.

The breakdown point of S∗
n is 0.293 with the correspond-

ing efficiency equal to 0.808. The breakdown point of S∗
n

is further improved by finding a one-step ahead M -estimate
of scale. The one-step ahead estimates are obtained by solv-
ing (3) iteratively. The iterative process proceeds by using the
highly robust MAD estimate as an initial estimate of scale

FQn = 1.483MADn

(
1− Z0 − n/

√
2

Z2

)
, (4)

where

Zk =

n∑
i=1

uki e
−u2

i /2 , ui =
xi −medx
1.483MAD

,

k = 0, 2; i = 1, . . . , n.

The FQn statistic is consistent under the normality assump-
tion when it is multiplied by the constant 1.483.

The general property of a one-step M -estimate is that it
has both the same asymptotic efficiency as the estimate de-
fined by the implicit estimating equation (3) and the same
breakdown point as the initial estimate [10]: in our case the
efficiency and breakdown point of FQn are equal to 0.81 and
to 0.5, respectively.

In Table 1, we present numerical results related to the per-
formance of the proposed robust estimates under the standard
normal distribution on large samples n = 1000; the results on
small samples n = 20 are similar to those on large samples.
The Monte Carlo experiment is based on 50, 000 trials.
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The columns in Table 1 are: the average denoted by Ave,
the standardized variance denoted by Var, the efficiency de-
noted by Eff, breakdown points denoted by ε∗, and computa-
tion times on Intel Core i7 at approximately 2.8 GHz denoted
by Time (the best values are boldfaced).

Table 1. Performance of Robust Estimates at the Standard
Normal, n = 1000

Ave Var Eff ε∗ Time (ms)
MADn 0.999 1.364 0.37 0.50 0.17
Qn 1.004 0.605 0.82 0.50 1.02
S∗
n 0.999 0.624 0.81 0.29 0.23

FQn 1.005 0.630 0.81 0.50 0.20

The values of estimate efficiencies and breakdown points
in Table 1 are obtained analytically, using standard asymp-
totic techniques [14]. The computation times on small sam-
ples (n = 20) are approximately the same for all the competi-
tors. From Table 1 it follows that for large samples, S∗

n and
FQn dominate overQn in computation time. Finally, we rec-
ommend the estimate FQn with the high efficiency 0.81, the
maximal breakdown point 0.50 and the much faster compu-
tation time 0.20ms as compared to the Qn computation time
1.02ms.

3.3. The FQ-Modification of the Tukey Boxplot

Based on the highly efficient robust estimate FQn of scale,
we propose a new rule for the boxplot extremes defined as

xL = max{x(1), LQ− kFQ FQn},

xU = min{x(n), UQ+ kFQ FQn}. (5)

4. PERFORMANCE EVALUATION

4.1. Detection of Outliers

The proposed robust boxplots as alternatives to the Tukey
boxplot, differ in estimating tail areas and consequently in de-
tecting outliers. Therefore, we undertake a comparison study
involving the robust and Tukey versions relative to detection
of outliers.

In statistics, an outlier [15] is an observation that is nu-
merically distant from the rest of the data. Outliers can occur
by chance in any distribution, but they are often indicative
either of a measurement error or that the underlying popula-
tion has a heavy-tailed distribution. In the former case, these
anomalous observations can have occurred due to transcrip-
tion errors or measurement system malfunctions. In the latter
case, they indicate that the underlying distribution may be set
by large kurtosis. A frequent cause of outliers is a mixture of
two distributions, which may be two distinct sub-populations,
namely, a combination of ”good data” and ”bad data”. This
scenario can be modeled by the Tukey gross error model [1].

Within the classical approach to detection of outliers, an
observation x is taken as an outlier if |x− x|/S > kα, where
x is the sample mean, S is the standard deviation, and the
threshold kα is determined from the given false alarm rate
(the probability of Type I error) at the normal distribution.
This rule is the classical Grubbs test [16].

In this paper, we most consider the boxplot (BP) detection
tests of the form: an observation x is regarded as an outlier if
x < xL or x > xU , where xL and xU are the lower and upper
extremes, respectively. In this setting, these thresholds also
depend on a free parameter k, which is chosen from the false
alarm rate α = 0.1.

4.2. Data Generation and Performance Measure

The Monte Carlo experiments are conducted by generating
300 samples of observations from the mixture of normal dis-
tributions (Tukey’s gross error model) [1]

f(x) = (1− ε)N(x; 0, 1) + εN(x;µ, s), (6)

where 0 ≤ ε < 1 is the probability of outliers (the fraction of
contamination) in the data and s > 1 is their scale.

For evaluating the performance of different tests, the sen-
sitivity (SE) and specificity (SP) measures are used in the
comparative study. Note that the sensitivity is nothing but
the test power, and the specificity is just unit minus the false
alarm probability. These two metrics are combined into a sin-
gle measure, namely, the harmonic mean between SE and SP:
H-mean= 2SE SP/(SE+SP ). The introducedH-mean is
an analog to the widely used in IR studies F -measure, which
is the harmonic mean between the recall (R) and the preci-
sion (P): F = 2RP/(R+P ). The H-mean can be naturally
used for performance evaluation in detection of outliers, since
in this case, tests with the different values of the false alarm
probability can be effectively compared. In our study, we just
have this case: the false alarm rates for the Tukey and modi-
fied boxplots are α = 0.06 and α = 0.1, respectively.

4.3. Scale and Shift Contamination

The results of Monte Carlo experiment are given in Tables 2-3
with the best performing statistics represented in boldface.

Table 2. H-means for detection tests under scale contamina-
tion: µ = 0, s = 3.
ε = 0.1 20 50 100 1000 10000
Tukey BP 0.64 0.72 0.72 0.72 0.72
MAD-BP 0.67 0.72 0.73 0.73 0.73
FQ-BP 0.66 0.72 0.72 0.72 0.73
Grubbs test 0.17 0.29 0.30 0.30 0.30

From Tables 2-3 it follows that both under scale and shift
contamination, the performances of boxplot tests, generally,
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Table 3. H-means for detection tests under shift contamina-
tion: µ = 3, k = 1.
ε = 0.1 20 50 100 1000 10000
Tukey BP 0.75 0.79 0.80 0.80 0.80
MAD-BP 0.73 0.80 0.80 0.80 0.80
FQ-BP 0.73 0.79 0.81 0.81 0.81
Grubbs test 0.32 0.39 0.40 0.39 0.39

are close to each other, and all of them outperform the clas-
sical Grubbs test, which is catastrophically bad. This effect
can be explained by non-robustness of the Grubbs test form-
ing statistics, the sample mean and standard deviation, under
contamination.

Further, the robust MAD and FQ versions are slightly
but systematically better than the Tukey boxplot test. Similar
results are obtained for the gross error models with ε = 0.2.

Table 4. H-means for detection tests under shift contamina-
tion with the different values of ε: µ = 3, s = 1, n = 100.

ε 0.05 0.10 0.20 0.30 0.40 0.50
Tukey BP 0.63 0.62 0.59 0.55 0.51 0.43
MAD-BP 0.65 0.65 0.60 0.56 0.52 0.44
FQ-BP 0.67 0.67 0.61 0.56 0.50 0.40

Grubbs test 0.65 0.56 0.41 0.31 0.25 0.21

In Table 4, the dependence of detection performance w.r.t.
the contamination parameter ε is studied. It is observed that
with small and moderate levels of shift contamination, the
FQ-boxplot is marginally better than its competitors. For
larger fractions of contamination (ε ≥ 0.3), the MAD-
boxplot outperforms its competitors. It can be explained by
the fact that the MAD is a minimax bias estimate of scale
under the Tukey gross error model [14].

4.4. Real-Life Data Results

We tested our algorithms on a real-world dataset obtained
from an experimental set up with representative cloud ap-
plications. It is a data intensive application implemented on
Hadoop based on a distributed set of auctioning services. The
analyzed data consist of 10 hours worth of service requests
collected at 30 second intervals, into which 50 anomalies are
injected over the duration of the experimental time-period.
The anomalies are major failures or performance issues. We
consider the metrics such as the server idle time (% idle), the
traffic per second (tpc), the speed of reading and writing of
data blocks (bread/s+bwrtn/s), and the speed of receiving and
transmitting of data blocks (rxpck/s+txpck/s).

From Table 5, it follows that the MAD and FQ-boxplots
considerably outperform the Tukey boxplot in terms of H-
mean. Similar results are also observed if to use the false

Table 5. H-means for boxplot tests applied to server data
Tukey BP MAD-BP FQ-BP

% idle 0.51 0.55 0.58
tpc 0.47 0.57 0.57

bread/s+bwrtn/s 0.47 0.56 0.56
rxpck/s+txpck/s 0.20 0.33 0.31

alarm rate α and the power of detection PD. For instance,
in case of the traffic per second (tpc), we have α = 0.06,
PD = 0.31 for the Tukey boxplot and α = 0.1, PD = 0.42
for the MAD- and FQ-boxplots. Generally, all those results
exhibit a rather low level of detection power; to raise it, we
should increase the false alarm rate.

5. CONCLUSIONS

The two robust versions of the Tukey boxplot are proposed.
Both versions aim at the symmetric distribution as their clas-
sical counterpart, the first MAD-BP being preferable under
heavy contamination, while the second FQ-BP – under mod-
erate contamination. The thresholds k can be adjusted to the
adopted level of the false alarm probability α when detect-
ing outliers. We recommend the values kMAD = 1.44 and
kFQ = 0.97 corresponding to the rate α = 0.1 under normal-
ity. All the boxplot tests considerably outperform the classical
Grubbs test, which is catastrophically bad under contamina-
tion.
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