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Carnegie Mellon University
Department of Electrical and Computer Engineering

Pittsburgh, PA 15213 USA
E-mail: {jderi,moura}@ece.cmu.edu

ABSTRACT

Online social networks and the World Wide Web lead to large
underlying graphs that might not be completely known be-
cause of their size. To compute reliable statistics, we have to
resort to sampling the network. In this paper, we investigate
four network sampling methods to estimate the network de-
gree distribution and the so-called biased degree distribution
of a 3.7 million wireless subscriber network. We measure
the quality of our estimates of the degree distributions by us-
ing the Kolmogorov-Smirnov statistic. Among all four sam-
pling methods, node sampling yields Pareto optimal sample
sizes in terms of the Kolomogorov-Smirnov statistic for the
degree distribution, while node-by-edge sampling yields opti-
mal sample sizes for the biased distribution. We also find that
random walk sampling performs better than the Metropolis-
Hastings random walk.

Index Terms— Graph sampling, Markov Chain Monte
Carlo (MCMC) sampling, Pareto optimality, large-scale net-
works

1. INTRODUCTION

Online social networks such as Facebook and Twitter can
have millions of nodes, and for networks such as the World
Wide Web, knowledge of the entire network may be impossi-
ble. Such large networks have motivated the study of graph
sampling with the goal of obtaining smaller, manageable sub-
graphs that are representative of the original network (see,
e.g., [1, 2, 3]). In this paper we ask which sampling method
is optimal with respect to a metric (see next paragraph). We
apply four standard sampling methods: node, node-by-edge,
random walk and Metropolis-Hastings random walk sam-
pling [1, 3].

A common method for determining the optimality of a
sampling scheme is to identify the minimum sample size
at which we obtain a subgraph with the desired properties.
We try a multiobjective approach based on Pareto optimal-
ity [4], where we want simultaneously to minimize the metric
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statistic and the sample size. We perform this analysis by
computing metrics over a range of sample sizes and locating
the knee, or point of maximum curvature, as a suitable com-
promise between metric value and sample size. The sampling
method that attains both the lowest sample size and the lowest
metric at its knee is optimal.

We seek sample sizes that yield accurate estimation of
degree distributions. For an undirected graph G = G (V,E)
with node set V and edge set E, the degree distribution p is
defined as

pk =
nk
N
, (1)

where nk is the number of nodes with degree k and N is the
total number of nodes. We also consider a so-called biased
degree distribution p̃k that is given by

p̃k =
kpk
〈k〉

, (2)

where k is the degree, pk is the degree distribution value for
degree k, and 〈k〉 =

∑
k kpk is the mean degree [5]. Previ-

ous work such as [1, 6, 7] have focused on attaining estimates
of pk. In this paper we investigate which of the four network
sampling methods leads to minimum sample sizes such that
representative subgraphs yield accurate estimates of both the
degree distribution and the biased degree distribution.

These distributions and their generating functions can be
used to estimate the diameter and giant component size if
the network obeys properties of the configuration model -
namely, node degrees are independent and the probability of
cycles negligible [5, 8]. Even when such conditions do not
hold, such as for real-world networks, the biased degree dis-
tribution defines the probability of traversing the neighbors
of a node’s neighbors [5]; thus, the two degree distributions
together give us information about the connectivity of 2-hop
neighborhoods. We believe the biased degree distribution is a
meaningful statistic to study for these reasons.

The remainder of the paper is as follows. Section 2
presents the sampling methods we consider and derives the
expected sample degree distributions. Section 3 discusses the
expected unbiased and biased degree distribution maximum
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likelihood estimates for each sampling method. Section 4
presents empirical results, focusing on the knees of the metric
curves obtained from both estimates. We discuss key results
in Section 5, and we summarize and outline future work in
Section 6.

2. SAMPLING METHODS

We describe the sampling methods and for each method spec-
ify the probability of choosing a node with fixed degree. We
use these probabilities to define the expected sample degree
distributions in Section 2.5.

2.1. Node Sampling (NS)

Node sampling is a standard sampling technique [1, 3]. We
sample a node v ∈ V uniformly at random with probabil-
ity 1/N . We repeat until we collect n nodes. The probability
of choosing a node v of degree kv = k is

πk = P (v | kv = k) =
1

N
.

2.2. Node-by-Edge Sampling (NES)

Node-by-edge sampling is another standard sampling tech-
nique [3]. We randomly select an edge e ∈ E with proba-
bility pe = 1/M , where M is the number of elements in E.
Then, one of the nodes connected to e is chosen with equal
probability. We repeat until we collect n nodes.

We show that the probability of selecting a node of fixed
degree is linear with degree for small pe. A node v with de-
gree k will not be chosen in two cases: (i) none of its edges
are picked; or (ii) its edges are picked but the other connected
nodes are selected. The probability of not picking v via its
first edge is (1− pe)+pe/2 = 1−pe/2. Thus the probability
of sampling a node of degree k is

πk = 1−
(
1− pe

2

)k
. (3)

We fix degree k and form the first-order Taylor series
around pe = 0, which yields

πk (pe) ≈
1

2
kpe. (4)

This approximation holds for small pe = 1/M . Assuming M
grows at least as fast asO(N) asN increases, we see that, for
large enough N , πk = k

2M .

2.3. Random Walk (RW)

We select a seed node v ∈ V uniformly at random. As in [1],
we select the next node w ∈ V conditional on the current
node v with probability

P (w v) =

{
1
kv

if (v, w) ∈ E
0 otherwise

, (5)

where kv is the degree of node v. For a connected, aperiodic
network, the probability of selecting a node given its degree k
converges (as N → ∞) to the steady-state probability distri-
bution πk = k/2M [1].

2.4. Metropolis-Hastings Random Walk (MHRW)

The procedure follows as in [1]: we select a seed node v and
select the next node w ∈ V with probability

P (w v) =


1
kv

min
(
1, kv

kw

)
if (v, w) ∈ E, w 6= v

1−
∑

i,i6=v P (i v) if v = w

0 otherwise

.

(6)
This method weights the transition probabilities so that nodes
with low degree are visited more frequently than in the ran-
dom walk. The resulting steady-state distribution for the
Metropolis-Hastings walk (on a connected, aperiodic net-
work) is πk = 1/N as in node sampling [1].

2.5. Expected Sample Degree Distributions

We denote by p̂k the sample (empirical) estimate of the degree
distribution. The expected sample degree distributions for the
sampling methods in this paper arise directly from the general
expected distribution derived in [9] (see also [8, 10, 11]). The
expected sample degree distribution is given by

E [p̂k] =

∑∞
l≥k p (k l)πlpl∑∞

l=0 πlpl
, (7)

where: pk is the probability of choosing a node of degree k
in the original graph; πk (v) is the probability of choosing a
node v ∈ V given it has degree k in the original graph; p (k l)
is the conditional probability of choosing a node that has de-
gree k in the sampled network given that its original degree
is l; and the sums are over all degrees in the network. We
assume that the sampled nodes retain their original degrees,
which is known as unlabeled star sampling [12], so the con-
ditional probability becomes an indicator function of degree
and we get

E [p̂k] =

∑∞
l≥k δ (l − k)πlpl∑∞

l=0 πlpl
=

πkpk∑∞
l=0 πlpl

. (8)

The πk in (8) depends on the sampling method. We con-
sider the two cases that apply here: constant πk and linear πk.

Suppose the sampling method selects nodes uniformly at
random with some probability p, i.e., πk = p. Then we apply
(8):

E [p̂k] =
p · pk∑∞
l=0 p · pl

=
pk∑∞
l=0 pl

= pk, (9)

so we expect to recover an unbiased estimate of the original
degree distribution when πk is constant.

Now suppose the sampling method selects nodes propor-

6502



tional to their degree, i.e., πk = Ck for some constant C.
Then we apply (8):

E [p̂k] =
Ckpk∑∞
l=0 Clpl

=
kpk∑∞
l=0 lpl

=
kpk
〈k〉

, (10)

so we expect to recover an unbiased estimate of p̃. By in-
spection of πk derived in Sections 2.1–2.4, we see that the
expected NS and MHRW estimates are the degree distribu-
tion, while the expected NES and RW estimates are the biased
degree distribution.

3. MAXIMUM LIKELIHOOD ESTIMATORS

The maximum likelihood degree distribution estimates for NS
and NES before re-weighting are derived in [13] by estimat-
ing pk, the probability of choosing a node with degree k, as
parameters of a multinomial distribution. The maximum like-
lihood estimates are

p̂k,NS = ̂̃pk,NES =
nk
n
, (11)

where the estimate for NES is weighted as seen in Section 2.5.
For MCMC methods RW and MHRW, we assume the

multinomial steady-state model [14], which yields the same
maximum likelihood estimates as in (11):

p̂k,MHRW = ̂̃pk,RW =
nk
n
. (12)

We next convert the p̃k estimates to pk estimates. We
use the Horvitz-Thompson estimator, which is used to com-
pute population totals when elements are randomly chosen
with probability proportional to their size [15]. The Horvitz-
Thompson estimate of the mean degree 〈k〉 is

〈̂k〉H =
n∑

v∈VS
1/dv

, (13)

where VS is the set of sampled nodes, n = VS is the sample
size, and dv is the degree of node v. We can show that this
estimator is also the maximum likelihood degree estimator for
NES and RW and is asymptotically unbiased (not shown for
space). By the functional invariance of maximum likelihood
estimates, the degree distributions are given by

p̂k,NES = p̂k, RW =
〈̂k〉HH

̂̃pk
k

. (14)

We similarly find the maximum likelihood biased esti-
mates for NS and MHRW:

̂̃pk,NS = ̂̃pk,MHRW =
kpk

〈̂k〉
, (15)

where 〈̂k〉 =
∑

k kp̂k is the maximum likelihood estimate of
the mean degree.

We use the Kolmogorov-Smirnov statistic (KS) to com-
pare the degree distribution estimates. It is defined as
KS (p‖p̂) = maxk F (k) − F̂ (k) where F and F̂ are the
cumulative distributions of the probability distributions p and
its estimate p̂ respectively. The KS statistic compares the
shape of the distributions without accounting for scaling (see,
e.g., [3]).

Fig. 1. KS Pareto curves for pk (a) and p̃k (b). The circles
mark the knee points (τ, µ) and (τ̃ , µ̃).

4. EMPIRICAL RESULTS

We sample a caller network of 3.7 million wireless sub-
scribers. We model the data as a network of active sub-
scribers, where an active subscriber makes at least one in-
network call in a single month period. The maximum degree
is > 3000 and the average degree is 12.

For the MCMC methods we would like to ensure that the
random walks have converged before we collect our samples.
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Knee Points for KS Metric Curves
Sampling Method τ µ τ̃ µ̃

NS 32,500 0.0053 32,500 0.0084
NES 33, 500 0.0068 32,500 0.0052
RW 48, 500 0.0130 33, 500 0.0094

MHRW 50, 500 0.0081 34, 000 0.0086

Table 1. Unbiased and biased knee points for the KS metric curves. The minimum points in each column are in boldface.

To do this, we implement a burn-in, which is an initial walk
on the network that is not included in the sample [1]. For our
purposes we use a burn-in of 800 for both MCMC methods.
We calculate the KS statistic for sample sizes up to 1000 and
average over 500 Monte Carlo iterations, which yields an
effective maximum sample size of 500, 000.

Determining the optimal sampling size is a multiobjective
optimization. We would like to minimize: (i) the metric KS
because a lower value indicates a better estimate, and (ii) the
sample size. This multiobjection leads to a Pareto optimality
problem [4]. We denote the optimal sample size/metric pair
by (τ, µ) for pk and by (τ̃ , µ̃) for p̃k.

We plot the Pareto curves that show the KS statistics
versus sample size in Fig. 1. Every point on this curve rep-
resents a good compromise between KS and the sample size.
We choose the knee of this curve, as the point closest to the
origin. To detect the knee, we iteratively partition the metric
curves over a range of sample sizes and compute the left-
hand and right-hand linear regressions; the knee occurs at the
sample size that minimizes the root mean-square error of the
regressions as explained in [16]. From Fig. 1 it is clear that
NS sampling minimizes (τ, µ) for pk and that NES sampling
minimizes (τ̃ , µ̃) for p̃k. If we only consider the MCMC
methods, we see that RW sampling yields the minimum pairs
for both pk and p̃k.

We verify the optimality of τ and τ̃ by computing the av-
erage KS values for these sample sizes. The values are listed
in Table 1. We see that NS sampling minimizes both τ and µ
and that NES sampling minimizes τ̃ and µ̃ as we expect. On
the other hand, if we only consider the MCMC methods, we
see that RW minimizes τ and τ̃ , but MHRW minimizes µ and
µ̃, so we cannot claim either as Pareto optimal based on the
local average KS values. However, the Pareto curve allows us
to see that RW is indeed optimal compared to MHRW.

We also computed τ and τ̃ values for Jensen-Shannon
divergence [17] and the root mean-square error of the degree
distributions (not shown). None of the four sampling methods
yielded Pareto optimal points for these metrics.

5. DISCUSSION

Our results in Fig. 1 and Table 1 show that node sampling
yields the Pareto optimal sample size τ = 32, 500 for p,
while node-by-edge sampling yields the Pareto optimal sam-
ple size τ̃ = 32, 500 for p̃. For both methods the optimal

sample size is 32, 500, or about 0.88% of the total network
size.

We note that there is no Pareto optimal method for esti-
mating both p and p̃. Instead we must weigh the trade-offs
from the Pareto analysis to determine which method to use
to estimate both p and p̃. For example, Table 1 shows that p̃
can be estimated under node sampling with a 62% increase
in µ̃, and that p can be estimated that under node sampling
with a 28% increase in µ and an additional 1000 samples. If
we cannot afford to increase the sample size, then the optimal
sampling method would be node sampling, for example.

As discussed in [7], the sampling method of choice for
networks of unknown structure is determined in part by the
available information. In particular, very large networks may
not be stored as a complete list (sampling frame) of nodes and
edges, in which case we must resort to methods that explore
local neighborhoods such as RW and MHRW. For our goal of
estimating both pk and p̃k for very large networks, our results
suggest that RW is preferable, although we cannot yet infer
Pareto optimality for general networks.

6. CONCLUSION

We evaluate two simple random sampling methods and two
Markov chain Monte Carlo methods based on estimates of
the degree distribution p and the biased degree distribution p̃.
We generate Pareto curves for the KS statistic as a function
of sample size and use these curves to identify Pareto opti-
mal sampling size/metric pairs and the corresponding optimal
sampling methods. For the 3.7 million caller network we find
that node sampling is optimal for estimating p and that node-
by-edge sampling is optimal for estimating p̃. In addition, we
see that RW is optimal for estimating both degree distribu-
tions with respect to MHRW. Future work includes studying
how Pareto optimality can be extended to general networks
and also investigating a wider range of sampling methods, in-
cluding respondent-driven sampling.
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