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ABSTRACT
We investigate the asset allocation optimization under the time-
varying high frequency global minimum variance portfolio frame-
work. The overall performance strongly relies on the estimate of
the portfolio covariance matrix. However, for such applications, the
sample size is often of similar order to the number of assets and in
this case, the performance of the conventional covariance estimators
are not very satisfactory. Additionally, the time variation effects
will further amplify the estimation error and thus lead to inaccurate
and high-risk investment decisions. In this paper, we propose to use
the recently developed time variation adjusted realized covariance
(TVARCV) estimator in a shrinkage structure, in order to address
the above-mentioned problems. For this shrinkage TVARCV esti-
mator, we provide a deterministic characterization of the portfolio
realized risk in terms of the shrinkage parameter and the covariance
matrix. At last, aiming to minimize the portfolio risk with respect to
the shrinkage parameter, we also provide a consistent estimator for
the realized variance, which depends only on the observable returns.
Numerical results show that the proposed estimator is robust to time
variation and has smaller portfolio risk.

1. INTRODUCTION

Portfolio optimization is well known and has been studied for many
years since Markowitz’s mean-variance optimization framework was
proposed [1]. This framework for solving the asset allocation prob-
lem relies on an accurate estimate of the expectation and covariance
matrix of asset returns. In general, estimates of the latter are more
stable, and thus many works focus on the performance of the covari-
ance estimation in the so-called global minimum variance portfolio
(GMVP) framework [2]. Moreover, covariance estimation is essen-
tial to many other applications, such as statistical signal processing,
financial engineering and related fields [3–5]. Note that an accurate
covariance estimation usually requires a large set of data samples,
which may range over years. Moreover, a constant covariance is
assumed in many traditional estimators, such as the sample covari-
ance matrix (SCM) estimator. However, the observation data often
exhibits strong non-stationary effects due to seasonal time variation,
which are well known to amplify the estimation errors and hence
lead to high risk and inaccurate investment decisions [6].

To reduce the effects of the seasonal time variation, the usage of
intraday high frequency data is often considered (see e.g. [7, 8]). In
such case, the problem is to estimate the integrated covariance (ICV),
which is the intraday instantaneous covariance integrated over a day.
Effectively, this model implies that the covariance between the dif-
ferent returns is relatively constant over time, but the individual vari-
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ances of the returns change in some unknown way. Therefore, we
can consider a short enough history to accommodate changes in the
covariance. The standard estimator for ICV is realized covariance
(RCV) estimator, see [9] and the references therein for a review.
The RCV estimator performs well if a very large number of sam-
ples are available [10]. However, similar to SCM estimator, it per-
forms poorly when the sample size is of similar order to the number
of assets. Therefore, developing improved estimator for such cases
is an important problem. For the traditional daily (i.e. none high
frequency) framework, improved estimators have been derived by
results from random matrix theory in a double limit regime, where
the sample size goes to infinity at the same rate as the number of
assets, see [11–13].

Another important characteristic of the high frequency data is
the presence of “intraday” time variation [10, 14–16]. Earlier tech-
niques, such as [10, 15, 16], used either autoregressive conditional
heteroskedasticity (ARCH) or generalized ARCH model. However
the model restrains to a single asset or a small number of assets be-
cause of its complexity. The recent state of art estimator, time vari-
ation adjusted realized covariance (TVARCV) estimator in [14] re-
duces the intraday time variation. However, it still performs poorly
in the condition when the sample size is of similar order to the num-
ber of assets.

We focus on the analysis and estimation of the realized variance
(portfolio risk) in a time-varying high frequency GMVP framework.
To improve the performance of RCV estimator and solve the prob-
lem of intraday time variation, we propose to apply TVARCV esti-
mator instead of RCV estimator in a shrinkage structure and get our
new James-Stein shrinkage TVARCV estimator, which is suitable
for large number of assets. Furthermore, for this shrinkage TVARCV
estimator, we provide a deterministic characterization of the random
portfolio realized risk in terms of only the shrinkage parameter and
the covariance matrix in a double limit regime. Moreover, to min-
imize the portfolio risk, we provide a consistent estimator for the
realized variance with regard to the shrinkage parameter which only
depends on the observable returns. Our estimator is robust to time
variation and outperforms the other benchmark estimators in mini-
mizing the portfolio risk.

2. MODEL AND PROBLEM FORMULATION

It is widely recognized that the variances of intraday returns show
strong time variation [10, 15, 16]. In our work, we consider dis-
cretely observed time-varying vector process of intraday returns with
N independent samples per day: yk = w

1/2
k uk, k = 1, 2, . . . , N ,

where wk is the unknown time-varying real coefficient, and uk =
Σ1/2zk ∈ RM is independent and identical distributed (i.i.d.) zero-
mean random vector with positive definite covariance Σ, but not nec-
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essarily Gaussian distributed. Σ is presumed to remain fixed during
a day with tr(Σ) = M . Θk = wkΣ is the intraday instantaneous
covariance. As Θk varies over time, it cannot be directly used in
applications such as asset allocation. Therefore, the ICV matrix,
defined as ΣICV =

∑N
k=1 Θk =

∑N
k=1 wkΣ = tr(WN )Σ is typ-

ically considered instead of the traditional covariance matrix, where
WN is a diagonal matrix with wk on its diagonal. The trace of WN

is normalized to be 1 and the ICV over a day becomes equivalent
to the covariance Σ [10, 15, 16]. Thus, we simply use Σ instead of
ΣICV to represent ICV in the time-varying GMVP framework.

We concentrate on the asset allocation problem in a time-varying
high frequency GMVP framework [17] which can be mathematically
formulated as the following quadratic optimization problem with lin-
ear constraints:

min
v

σ2
P (v) = vTΣv (1)

s.t. vT1M = 1 ,

where v denotes the vector of asset holdings in units of currency,
1M ∈ RM with all entries equal to 1. The solution of (1) is

vGMVP =
Σ−11M

1TMΣ−11M
, (2)

giving the following minimum portfolio variance σ2
P (vGMVP) =

1
1T
M

Σ−11M
. This represents the minimum possible portfolio risk that

may be achieved, provided that we know Σ exactly.
In practice we do not know Σ, thus we form some estimate Σ̂.

We denote by v̂GMVP the sample portfolio chosen based on Σ̂. In
practice, the quality of a portfolio rule v̂GMVP based on a forecast
or in-sample prediction of Σ can be measured by the out-of-sample
or realized variance, which is a measure of the portfolio risk:

σ2
P (v̂GMVP) = v̂TGMVPΣv̂GMVP =

1TMΣ̂−1ΣΣ̂−11M(
1TMΣ̂−11M

)2 . (3)

3. RCV PERFORMANCE AND TIME VARIATION EFFECT
TEST

The most widely used estimator for ICV is the RCV estimator:
Σ̂RCV = Σ1/2ZWNZTΣ1/2, Z = [z1, z2, . . . , zN ]T . This can
be seen as a weighted sample covariance with unknown time varia-
tion weighting WN . In this section, we will show two main issues
when the RCV estimator is used on time-varying samples in a more
practical condition, when the sample size N is of similar order to
the number of assets M . The test results first show that lack of sam-
ples may lead to high bias or variance, and hence high estimation
error. Moreover, the time variation effect will further amplify the
estimation error.

We compare the accurate approximation of three RCV curves to
theoretical minimum variance (MV) bound σ2

P (vGMVP) in a time-
varying GMVP framework based on Σ̂RCV. The test is to show
the poor performance of RCV estimator and the error amplification
caused by time variation effect. The samples yk are assumed to be
the product of w1/2

k and a Gaussian random vector uk with pos-
itive definite covariance Σ. [Σ]i,j = 0.9|i−j|, 1 ≤ i, j ≤ M .
M varies from 60 to 320 with N = 2M . All the simulations are
repeated for 50 trials and the average empirical performance is re-
ported. The RCV estimators are used on three series of return sam-
ples with different time variations but sharing the same Σ. The sam-
ples of RCVnone are assumed to be i.i.d. with no time variation,

i.e. yk = 1√
N

uk. We can find in figure Fig. 1 that the curve of
RCVnone, when used on i.i.d. samples, significantly deviates from
the MV bound when N and M are of similar order.

Moreover, to describe the time variation, the entries of Θk are
assumed to approximate U-shape distribution during a day like in
[14]. The diagonal entries of WN are assumed to be piecewise con-
stants:

wk =


a
N
, k = 1, 2, . . . , N

4
,

b
N
, k = N

4
+ 1, . . . , 3N

4
,

a
N
, k = 3N

4
+ 1, . . . , N,

(4)

where a and b are two constants with different values for each of the
three curves, a+b = 2. For all the three curves, we have ΣICV = Σ.
For RCVsmall curve, a = 6

4
, b = 2

4
in (4), and for RCVbig curve,

a = 7
4
, b = 1

4
. The samples of RCVbig are more volatile (i.e., have

more time variation) than those of RCVsmall. In Fig. 1, we can see
that the curve of RCVbig deviates further from the MV bound than
RCVsmall does. RCVnone is closest to the MV bound. The figure
shows when the return process is more volatile, the curve will be
further away from the MV bound. The time variation is shown to
further amplify the estimation errors.

When we do not have sufficiently large number of samples, the
traditional estimators such as SCM and RCV, even used on i.i.d. re-
turns, are likely to underestimate the portfolio risk, which lead to
high risk and overly optimistic investment decisions. Time variation
effects further amplify the estimation errors. These problems moti-
vate us to provide an estimator which can improve the accuracy of
RCV estimator and also solve the problem of time variation effect in
the time-varying high frequency GMVP problem.
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Fig. 1. Accurate approximation test in a time-varying GMVP frame-
work using RCV, TVARCV

The TVARCV estimator in [14] is shown to be able to reduce
time variation and is given as follows:

Σ̂TVARCV = αM

N∑
k=1

yky
T
k

‖yk‖22
, (5)

where αM = tr(Σ̂RCV)/N .
The TVARCV estimator seeks to normalize the time varia-

tion by normalizing wk of each sample. In Fig. 1, the samples
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of TVARCVsmall and TVARCVbig curves use the same WN as
RCVsmall and RCVbig respectively. What is interesting is that the
curves of TVARCVsmall and TVARCVbig, although calculated
based on samples with different time variation, are nearly the same.
Moreover, we can find that when N is big enough (around 350), the
TVARCV curves are nearly the same as the curve of RCVnone.

The TVARCV estimator can be used to reduce the time variation
effect. However, lack of samples may lead to high bias or variance,
therefore the curve of TVARCV estimator still significantly deviates
from the MV bound when N and M are of similar order. In the next
section, based on the TVARCV estimator, we will provide an esti-
mator which will further improve the performance and significantly
reduce the gap relative to the MV bound.

4. ASYMPTOTIC EQUIVALENCE AND CONSISTENT
ESTIMATORS FOR TIME-VARYING GMVP FRAMEWORK

4.1. James-Stein shrinkage TVARCV estimator

We now provide an estimator which will further improve the perfor-
mance of TVARCV estimator. The James-Stein shrinkage structure
is widely used in many previous works to further improve the bias-
variance tradeoff of the model [11, 12, 18]. It is often a combination
of the SCM and the identity matrix. In the high frequency GMVP
framework, [17] seeks to use a linear shrinkage of the RCV and the
identity matrix to estimate Σ. In this work, the need for addressing
the time variation motivates the use of TVARCV instead of RCV in a
shrinkage structure. Our proposed James-Stein shrinkage TVARCV
estimator has the following structure:

Σ̂PSHR = (1− ρM )αM

N∑
k=1

yky
T
k

‖yk‖22
+ ρMIM , (6)

where ρM is the shrinkage parameter with 0 < ρM < 1, IM is the
identity matrix.

The achieved realized variance based on Σ̂PSHR in the time-
varying GMVP framework:

σ2
P (v̂GMVP) = v̂TGMVPΣv̂GMVP =

1TMΣ̂−1
PSHRΣΣ̂−1

PSHR1M(
1TMΣ̂−1

PSHR1M
)2 ,

(7)

which is random. The main challenge is to optimize the parameter
ρM in (6), in order to minimize the realized variance in (7). To this
end, we first provide a deterministic characterization of σ2

P (v̂GMVP)
in terms of Σ and ρM in a double limit regime. This gives a deter-
ministic approximation for the true portfolio risk, and will be used
subsequently to specify a consistent estimator for the optimal shrink-
age parameter ρM .

4.2. Asymptotic equivalence of the time-varying GMVP realized
variance

For our asymptotic analysis, we assume:
(A1) The double limit regime where N,M →∞ such that 0 <

lim inf M
N
≤ lim sup M

N
<∞.

(A2) Σ has spectral norm bounded uniformly in M and N .
We now define

ξM :=
1

N
tr
[(

Σ (κMΣ + ρMIM )−1)2] (8)

ξ̃M := κ2
M ,

with κM the solution to [12]:

κM =
1− ρM

1 + (1− ρM ) 1
N
tr [Σ(κMΣ + ρMIM )−1]

. (9)

Previous works [12, 13] have characterized the deterministic
equivalence of the realized variance for i.i.d. samples in the tra-
ditional daily framework. However, these works depend on i.i.d.
daily samples. In the time-varying high frequency framework, the
asymptotic equivalence result does not only depend on Σ, but also
on how the time-variation process evolves [14]. As a result, when
the time variation coefficients wk are not constant and are unknown,
results of [12, 13] do not directly apply. Therefore, we aim to derive
an asymptotic equivalence result for the realized variance in the
time-varying high frequency GMVP framework. To this end, the
following technical lemma is important:

Lemma 1. Under assumptions (A1) and (A2), the following asymp-
totic equivalence holds true:

tr

ΓM

(
αM

N∑
k=1

yky
T
k

‖yk‖22
− zIM

)−1


� tr

[
ΓM

(
κM

1− ρM
Σ− zIM

)−1
]
, (10)

where � denotes asymptotic equivalence, z = − ρM
1−ρM

, ΓM =

hMhHM , with hM ∈ CM being an arbitrary nonrandom unit norm
vector, and κM is given in (9).

The proof of Lemma 1 involves the limiting empirical spectral
distribution equivalence in [14] and the results in [12]. It is omitted
due to space limitation.

Theorem 1. (Time Variation Adjusted Asymptotic Determinis-
tic Equivalence) Under assumptions (A1) and (A2), the following
asymptotic equivalence holds true:

σ2
P (v̂GMVP) �

1

1− ξM ξ̃M
(11)

· 1
T
M (κMΣ + ρMIM )−1 Σ (κMΣ + ρMIM )−1 1M(

1TM (κMΣ + ρMIM )−1 1M
)2 ,

where ξM and ξ̃M are defined in (8), κM is calculated in (9).

Theorem 1 enables us to characterize σ2
P (v̂GMVP) in terms of

the only non-random variable Σ and ρM . Moreover, the result is
robust to time variation and describes the true realized variance in the
time varying framework. However, in reality, we do not know Σ, we
can not use this result to optimize ρM which minimizes the realized
variance. Therefore, we aim to provide a consistent estimator for us
to minimize the realized variance with regard to ρM .

4.3. Consistent estimators for minimizing the time-varying
GMVP realized variance

Here we provide a time variation adjusted consistent estimator of
the realized variance for us to optimize the shrinkage parameter ρM ,
which can be effectively used to minimize the realized variance in
(7). To this end, we first denote the numerator of the right side of (7)
as bM , in which Σ in practice is unknown. In order to determine the
optimal ρM , we need to obtain a consistent estimator for bM , which
is given in the following theorem.
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Theorem 2. (Time Variation Adjusted Generalized Consistent Es-
timator) Under assumptions (A1) and (A2), we have the following
asymptotic equivalence

bM �
1

(1− ζ)2 1TMΣ̂−1
PSHRΣ̂TVARCVΣ̂−1

PSHR1M , (12)

where

ζ =
1

N
tr

[
Σ̂TVARCV

(
Σ̂TVARCV +

ρM
1− ρM

IM

)−1
]
.

Now substituting (12) into (7) yields

σ2
P (v̂GMVP) �

1TMΣ̂−1
PSHRΣ̂TVARCVΣ̂−1

PSHR1M

(1− ζ)2
(
1TMΣ̂−1

PSHR1M
)2 . (13)

Therefore, the problem of obtaining the best asset allocation, as mea-
sured by the minimum realized variance, is reduced to optimizing
(13) with regard to ρM . This can be done with a simple numerical
search.

From (13), we see that the TVAGCE only depends on the ob-
servable return samples yk, and it is robust to intraday time varia-
tion. Moreover, the obtained estimator in (13) diminishes the time
variation effect and further minimizes the realized variance. It is also
important to note that compared with the generalized consistent esti-
mator for the i.i.d. case in [12], we reduce the number of parameters
from N + 1 to 1, which significantly reduces the time of optimiza-
tion.

5. NUMERICAL SIMULATIONS

In the simulation section, we demonstrated the advantages of our re-
sults in: (1) nicely approximating the MV bound in the in-sample
(accurate approximation) test; (2) further minimizing the portfolio
risk with respect to the shrinkage parameter ρM in the out-of-sample
test in the time-varying high frequency GMVP framework. The sam-
ples are assumed to be the same as the previous test in Section 3.

In the first test, we compare the accurate approximation of five
curves to the MV bound: (1) TVARCVbig as the benchmark; (2)
shrRCVsmall, a shrinkage of the RCV estimator using the same data
as RCVsmall; (3) shrRCVbig, a shrinkage of the RCV estimator
using the same data as RCVbig; (4) TVAGCEsmall, the proposed
method using the same data as RCVsmall; (5) TVAGCEbig, the
proposed method using the same data as RCVbig. We can find in
Fig. 2 that the curves of shrRCVsmall and shrRCVbig do not show
much improvement. The curves of the proposed TVAGCE nicely
approximate the MV bound. Moreover, the curves are above the
MV bound, which solves the problem of risk underestimation which
most traditional estimators have.

In the second test, we use the same five curves as in the first test
and compare the abilities of each estimator in minimizing the real-
ized portfolio risk. We consider a range of 30 days and assume the
ICV matrix Σ does not change over the 30 days. The intraday time
variation effects are assumed to be the same for each day. We use N
intraday returns of the present day to predict the portfolio v̂GMVP of
the next day. The portfolio risk is measured by the standard devia-
tion of the out-of-sample returns. Figure 3 shows that our proposed
TVAGCE is robust to time variation and has smaller portfolio risk
than both the shrinkage RCV estimator and TVARCV estimator.
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Fig. 2. Accurate approximation test of TVARCV estimator, shrink-
age RCV estimator and the proposed TVAGCE in a time-varying
GMVP framework.
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