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ABSTRACT

In this paper, we consider a Bayesian estimation problem in a sensor
network where the local sensor observations are quantized before
their transmission to the fusion center (FC). Inspired by Widrow’s
statistical theory on quantization, at the FC, instead of fusing the
quantized data directly, we propose to fuse the post-processed data
obtained by adding independent controlled noise to the received
quantized data. The injected noise acts like a low-pass filter in the
characteristic function (CF) domain such that the output is an ap-
proximation of the original raw observation. The optimal minimum
mean squared error (MMSE) estimator and the posterior Cramér-
Rao lower bound for this estimation problem are derived. Based on
the Fisher information, the optimal controlled Gaussian noise and
the optimal bit allocation are obtained. In addition, a near-optimal
linear MMSE estimator is derived to reduce the computational com-
plexity significantly.

Index Terms— Bayesian estimation, data fusion, quantization,
bit allocation, Fisher information, sensor networks

1. INTRODUCTION

For a sensor network (SN) with limited resources (bandwidth and/or
energy), it is important to limit the communication within the net-
work. Therefore, transmission of binary or multi-bit quantized data
is a desirable solution. For a centralized sensor network architec-
ture with quantized data, each sensor node sends its quantized data
to a FC, where all the quantized sensor data are fused to perform
parameter estimation (e.g. target localization). Our previous work
has focused on target localization with quantized sensor data using
static quantizers when no prior on the target’s location is available.
These include [1–3]. In [1, 2], target localization methods based on
quantized sensor data have been developed assuming perfect com-
munication channels between the sensors and the FC, while in [3],
wireless channel statistics are taken into consideration. In this paper,
instead of estimation of deterministic target location, we are inter-
ested in estimating a random variable (RV) with known prior based
on quantized data collected at the FC, keeping the assumption of
perfect communication channels.

The novelty of this paper is that the quantized data are not fused
directly by the FC for parameter estimation, but preprocessed by in-
jecting independent controlled noise. The basic idea was inspired
by Widrow’s statistical theory of quantization [4]. The addition of
noise after quantization is equivalent to low pass filtering in the
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CF domain, such that the original analog observation can be re-
covered. Therefore, the whole process of quantizing and injecting
controlled noise can be theoretically modeled as an additive distur-
bance, whose distribution is analytically derived in this paper. This
theoretical model facilitates the derivation of the optimal minimum
mean squared error (MMSE) estimator, the posterior Cramér-Rao
lower bound (PCRLB), the near-optimal linear MMSE (LMMSE)
estimator, and its corresponding mean squared error (MSE), all of
which are in exact forms. Furthermore, the numerical results in
this paper show that the LMMSE estimator can provide compara-
ble performance to that of the optimal MMSE estimator while saves
a lot of computation effort. A similar idea (injecting controlled noise
to quantized data) has been applied to solve a distributed detection
problem in our previous work [5], and promising preliminary results
were obtained therein. A related but different work is documented
in [6] where the problem of estimating a deterministic parameter in
noise using quantized observations has been discussed. However,
in [6], the authors proposed to add the dither noise before quantiza-
tion at local sensors which amounts to anti-alias filtering [6], while
we propose to add it post quantization, which is performed by the
FC.

Since quantizers are involved in the problem, the issue of bit
allocation naturally arises, which has been formulated as an opti-
mization problem in several publications [7, 8]. In this paper, we
will also address the bit allocation problem. There are two major
differences between our work and that in [8]: 1) In this paper, the
probability density function (PDF) of the equivalent additive distur-
bance, which models the whole quantization and noise injection pro-
cess, is derived. Based on this, as discussed earlier, exact solutions
for estimators and their performance measures are derived. In [8],
a quasi-MMSE estimator that fuses quantized data directly was pro-
posed in an ad-hoc manner, by simply replacing the analog data with
the quantized ones in the MMSE formula designed for unquantized
analog data. This may incur large estimation error and severe sub-
optimality in many cases, as clearly shown in the numerical exam-
ples in [8]. 2) In [8], the bit allocation problem was solved by mini-
mizing either an upper bound on the MSE of the quasi-MMSE, or an
approximated difference between the Fisher information of the ana-
log data and that of the quantized data, the latter of which is based on
the strong assumption that the quantization interval is approaching
zero. In contrast, in this paper, the bit allocation problem is solved
based on the exact Fisher information.

2. A REVIEW OF WIDROW’S STATISTICAL THEORY OF
QUANTIZATION

In [4], the uniform quantization of a RV is interpreted as sampling
of its PDF, and it was shown that the PDF of the quantized RV is the
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convolution of the input RV’s PDF with the PDF of a uniform distri-
bution followed by conventional sampling. Thus, at the ith sensor,
the PDF of the quantizer output, ui, is

pUi
(u) = [pWi

(u) ∗ pZi
(u)] ·

∑

k∈Z

qiδ
(

u− kqi −
qi
2

)

, (1)

where pZi
(z) is the PDF of the input RV zi, pWi

(w) denotes the
PDF of a uniform distribution over [−qi/2, qi/2], and qi is the
quantization step-size of the uniform quantizer. Thus, uniform quan-
tization introduces two types of distortions or errors: (a) the additive
noise wi, and (b) the aliasing error due to sampling. However, if the
input PDF is bandlimited so that its CF φZi

(v) = 0 for |v| > π
qi

,
the aliasing error can be avoided and, in principle, the original PDF
can be reconstructed from the knowledge of pUi

. This is Widrow’s
first quantization theorem:

Theorem 1. If the CF of the input variable Zi is bandlimited, i.e.,

φZi
(v) = 0, |v| >

π

qi
(2)

then the replicas of φUi
(v) do not overlap, and in principle, the

original PDF pZi
can be recovered from pUi

.

3. PROBLEM FORMULATION

Let us consider the estimation of a RV θ in a wireless sensor network,
where θ ∼ N (0, σ2

θ). It is also assumed that N sensors are observ-
ing the parameter θ, and each local sensor’s observation is corrupted
by independent additive Gaussian noise, i.e., observation model for
sensor i is

zi = θ + ni, i = 1, 2, · · · , N (3)

where ni ∼ N (0, σ2
ni
).

Each sensor performs uniform quantization before transmission
and the step-size of quantizer i is set as qi. Denote the quantized data
as ui. In [5], for hypothesis testing problems, the fusion process is
simplified by adding controlled noise to the observations received at
the FC. For the Bayesian estimation problem considered in this pa-
per, we propose a similar fusion system as shown in Fig. 1. An ex-
ternally generated noise (di) with a band-limited CF, is added to the
quantized observations from the ith sensor to filter out the repeated
and phase-shifted CF side lobes in the CF of ui. This is analogous to
low pass filtering in signal processing. We, therefore, call the noise
di, the LPF-noise.
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Fig. 1. Bayesian estimation aided by controlled noise. S: sensor; Q:
quantizer; z: sensor data; u: quantized data; d: controlled noise; y:
data received at fusion center.

Then, the received data at the FC is given as

yi = ui + di (4)

Note that an ideal noise source would be one with a rectangular CF
in the pass-band, − π

qi
≤ v ≤ π

qi
. However, a rectangular function

in the CF domain corresponds to a PDF whose shape corresponds
to a sinc function, which is obviously an invalid PDF. Therefore, we
limit our consideration to only Gaussian noise in this paper. That is,
di ∼ N (0, σ2

di
), and the variance σ2

di
controls the bandwidth of the

filter.
Note that once (2) is satisfied, we have

yi = ui + di = zi + wi + di (5)

where wi ∼ U(− qi
2
, qi

2
). One needs to carefully design the PDF

of di so that it causes minimal distortion while transforming the
discrete-valued RV, ui, into a continuous variable, yi.

4. CONTROLLED NOISE AIDED MMSE ESTIMATION

In this section, the design of the controlled noise and allocation of
bits across the network will be solved jointly, such that the estimation
performance of the system is optimized. Since the PCRLB is the
lower bound on the MSE, it is used as the metric in the paper for
optimization.

4.1. Bayesian Estimators and Fisher Information

Let us denote the received data vector at the FC as y = [y1, · · · , yN ]T .
Since zi and di are Gaussian RV respectively, we have p(zi+di)|θ =

N (θ, σ2
ni

+ σ2
di
). Then, using (5), we can express the likelihood as

p(yi|θ) = p(zi+di)|θ ∗ pwi
(6)

=
1

qi



Φ





yi − θ + qi/2
√

σ2
ni

+ σ2
di



− Φ





yi − θ − qi/2
√

σ2
ni

+ σ2
di









where Φ(·) is the cumulative distribution function (CDF) of a Gaus-
sian RV with zero mean and unit variance. Since sensors’ observa-
tions are conditionally independent, we have

p(y|θ) =
N
∏

i=1

p(yi|θ) (7)

4.1.1. Optimal MMSE Estimator

The optimal MMSE estimator, i.e., the posterior conditional mean
is given as follows

θ̂MMSE =

∫

θ
p(y|θ)p(θ)

∫

p(y|θ)p(θ)dθ
dθ (8)

For any Bayesian estimator, its MSE is bounded below by the
PCRLB, which is the inverse of the Bayesian Fisher information.
The Bayesian Fisher information is derived and provided in the
following theorem.

Theorem 2. For a sensor network with N sensors, and the observa-
tion model given by (3), if zi and qi, for i = 1, 2, · · · , N , satisfy the
condition specified in (2), and the controlled noise di is Gaussian,
then the Fisher information is given as

J =
N
∑

i=1

J̃i + σ−2
θ (9)
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where

J̃i =

∫

θ

p(θ)

∫

yi

1

qi2π(σ2
ni

+ σ2
di
)
·

[

e−
1

2
ξ2i,1 − e−

1

2
ξ2i,2

]2

[Φ(ξi,1)−Φ(ξi,2)]
dyidθ

(10)
and ξi,1 = yi−θ+qi/2

√

(σ2
ni

+σ2

di
)
, ξi,2 = yi−θ−qi/2

√

(σ2
ni

+σ2

di
)
.

Proof. Once we obtain the likelihood (6) and the prior p(θ), the
Fisher information can be derived using standard procedures. The
detailed proof is omitted for brevity. �

It is clear that both the implementation of the MMSE estimator
and the evaluation of Fisher information involve integrals.

4.1.2. Sub-Optimal LMMSE Estimator

Though (8) is optimal, it requires the evaluation of two integrals.
We would like to seek a computationally more efficient estimator.
Combining (3) and (5), we have

yi = θ + gi (11)

where gi , ni + wi + di. It is easy to show that

E{gi} = E{ni + wi + di} = 0 (12)

and the variance is given as

σ2
gi = σ2

ni
+ σ2

di + q2i /12 (13)

since noise ni, wi and qi are independent of each other. gi does not
follow a Gaussian distribution. However, due to the linear relation-
ship between yi and θ as in (11), it is natural to use the LMMSE
estimator for θ [9], which is derived and provided as follows.

θ̂LMMSE = µθ +

(

1

σ2
θ

+
N
∑

i=1

1

σ2
gi

)−1 N
∑

i=1

yi − µθ

σ2
gi

(14)

where µθ = 0 is the mean of the prior PDF of θ. The corresponding
estimation MSE is

E{(θ − θ̂LMMSE)
2} =

(

1

σ2
θ

+

N
∑

i=1

1

σ2
gi

)−1

(15)

As can be seen, the LMMSE and its MSE have closed-form so-
lutions and are computationally efficient.

Proposition 1. Given qi such that (2) holds, the MSE of the LMMSE
estimator is a monotonic increasing function of σdi .

Remark 1: Proposition 1 can be easily proved using (15), since
a larger σdi means a smaller 1/σgi , and hence a larger MSE. Due to
Proposition 1, we conjecture that the Fisher information Ji should
be a monotonic decreasing function of σdi , which will be shown
numerically in Section 5. This is intuitively true, because smaller
σdi means larger signal-to-noise ratio (SNR). Thus, once qi is fixed,
σdi can be determined, i.e., the smallest acceptable one. One should
note that σdi cannot be infinitely small. This can be interpreted from
the CF domain of ui. Since the bandwidth of di in CF domain is
inversely proportional to σdi , the largest bandwidth acceptable is the
one that completely covers the central lobe while does not cover the
second side lobe to make sure that no aliasing error is introduced.

4.2. LPF-noise design and bit allocation

We are interested in simultaneously designing the local quantizer
parameter qi and controlled noise di such that the performance is
optimized. In fact, quantizer design is equivalent to the bit alloca-
tion problem, since a uniform quantizer is used. Note that sensors
considered in this problem are not identical, in the sense that the
variances of the observation noises are different from each other,
i.e., σni

6= σnj
, for i 6= j. If J is used as the optimization metric,

then the design problem can be formulated as

Optimization Formulation:

max
~B,~σd

J ( ~B,~σd) (16)

s.t.
N
∑

i=1

bi = R, and

φZi
(v) = 0, |v| >

π

qi
, for i = 1, 2, · · · , N (17)

where ~B = (b1, b2, · · · , bN), ~σd = (σd1 , σd2 , · · · , σdN ) , R is the
total number of bits, and Zi is the input variable of the quantizer.

Remark 2: A) the problem can be solved without exhaustive
search over the entire space of { ~B,~σd}, due to Remark 1. The
optimal solution for this problem can be obtained as follows: 1)
for any possible ~B, determine ~σd first, and then compute its corre-
sponding Fisher information; 2) the optimal solution is the combina-
tion which provides the maximum Fisher information in step 1). B)
When N = 2, there are only R+1 different bit allocation solutions,
and one can find the optimal solution by brute force. However, when
N is large, the brute force method is not practical, and suboptimal
solutions are more desirable. Algorithms such as the GBFOS algo-
rithm [10], the convex relaxation [11], and the approximate dynamic
programming method [12] can be used for this purpose.

5. NUMERICAL RESULTS

In this section, we first numerically show that Ji is a monotonic
decreasing function of σdi (Remark 1). Then, when N = 2, the
optimal bit allocation scheme in the sense of maximizing the Fisher
information by brute force is obtained. Besides, numerical results
show that the optimal solution obtained by the proposed mechanism
indeed yields the minimum MSE, compared to the method of equally
distributing the bits and the method of allocating all the bits to the
better sensor. We also show that the proposed sub-optimal LMMSE
estimator can achieve comparable performance to the optimal one
while alleviating the computational complexity.

5.1. Experiment 1

In this experiment, only 1 sensor is considered. We set σn = 1, and
q = 0.3, such that (2) holds. The RV θ is Gaussian distributed with
zero mean and variance σ2

θ = 4. We can observe that, from Fig. 2,
the Fisher information is a monotonic decreasing function of σd.

5.2. Experiment 2

There are a total of N = 2 sensors in the network, and R bits are
available to be allocated between the two sensors. The two sen-
sors are different from each other, with σn1 = 0.6, and σn2 = 3.
Since Gaussian noise is considered in this paper, and theoretically

6493



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ
d

F
is

he
r 

in
fo

rm
at

io
n 

J

Fig. 2. Fisher information as a function of σd

its bandwidth in the CF domain is not limited, we will truncate the
bandwidth in the experiments in this section. That is, φx(v) ≈ 0,
if |v| ≥ 4σxv , where x ∼ N (0, σ2

x) and σxv = 1/σx (which is
because the CF of a Gaussian RV is still in the form of Gaussian,
and the variance of the former is the inverse of that of the latter).
To ensure that (2) holds, we have π

qi
≥ 4( 1

σni
), i.e., qi ≤

πσni

4
.

According to Remark 1, the smallest standard derivation σdi should
satisfy the condition 4( 1

σdi

) = 2π
qi

− 4( 1
σni

), i.e., σdi = 1
2π
4qi

− 1

σni

.

Since the uniform quantizer is used at each local sensor, the relation-
ship between the quantizer resolution qi and the number of bits bi
for sensor i is given as qi = Li

2bi
, where Li is the observation data

zi’s range for sensor i, and Li = 8
√

σ2
θ + σ2

ni
.

Table 1. R = 20, Fisher Information Comparison
Bit alloc. J Bit alloc. J

(20, 0) 3.0231 (10, 10) 3.1376
(16, 4) 3.1062 (9, 11) 3.1172
(15, 5) 3.1318 (8, 12) 3.1204
(14, 6) 3.1331 (7, 13) 3.0492
(13, 7) 3.1366 (6, 14) 2.7506
(12, 8) 3.1385 (0, 20) 0.3610
(11, 9) 3.1313 – –

Table 1 shows the Fisher information comparison, when R =
20, for all the feasible bit allocation solutions. In the table, the com-
bination (a, b) has the following meaning: a is the number of bits
allocated to the first sensor while b is that allocated to the second
one, and a + b = R. Note that non-feasible solutions (solutions
violating (2)) are not listed in the table. Note also that, (20, 0) and
(0, 20) are considered as feasible solutions, since 0 means one sen-
sor is not active. We can observe that, the equal allocation (10, 10)
(which is usually used in SNs) does not yield the maximum Fisher
information. Another interesting observation from Table 1 is that
allocating all bits to the better sensor, i.e., (20, 0) is not the opti-
mal solution, while the optimal one is (12, 8), which implies that
even if sensor 1 is better than sensor 2 in the sense of higher SNR,
it is better to assign a few bits to sensor 2 to achieve the diversity
gain. However, the Fisher information begins to decrease if more
bits are assigned to sensor 2. Nevertheless, the difference between
the Fisher information yielded by the optimal bit allocation solu-

tion (12, 8) and that yielded by the equal allocation (10, 10) is very
small. This is because 10 is a large number of bits, which implies
very high resolution of the quantizer.

In Table 2, R is reduced to 12. As in Table 1, the solution
(12, 0) does not yield the optimal performance, neither does the so-
lution (6, 6). And the optimal solution in the sense of maximizing
the Fisher information is (8, 4). Obviously, when the total num-
ber of bits is decreased to a smaller number, the difference between
the Fisher information yielded by the optimal bit allocation solution
(8, 4) and that by the equal allocation (6, 6) is much larger than that
in Table 1. We would like to justify the optimality of the proposed bit
allocation scheme. Also, we would like to show that the performance
of the sub-optimal LMMSE estimator is comparable to the optimal
MMSE estimator. Therefore, in Table 2, we also provide the MSE
comparison between different bit allocation solutions and between
different estimators as well as the corresponding PCRLBs. Note
that 1000 Monte Carlo runs are performed to compute the MSEs.
Note also that MSE1 is the MSE of the optimal MMSE estimator,
MSE2 is that of the sub-optimal LMMSE estimator and MSE3 is
computed according to (15). Obviously, the optimal solution (8, 4)

Table 2. R = 12, Fisher information comparison
Bit alloc. J PCRLB MSE1 MSE2 MSE3
(12, 0) 3.0276 0.3303 0.3351 0.3353 0.3303
(8, 4) 3.0883 0.3238 0.3312 0.3310 0.3238
(7, 5) 3.0519 0.3277 0.3374 0.3375 0.3277
(6, 6) 2.7492 0.3637 0.3686 0.3685 0.3637

(0, 12) 0.3610 2.7698 2.7780 2.7756 2.7692

yields the minimum MSE, which justifies the proposed bit alloca-
tion scheme. Another observation is that the MSE2 is comparable to
MSE1, which means that the proposed LMMSE estimator can pro-
vide performance that is very close to the optimal estimator while
saving a lot of computation efforts. By comparing MSE2 to MSE3,
we can observe that the experimental MSEs are close to the analytic
ones. Note that MSE3 is very close to the PCRLBs obtained by in-
verting (9), which further justifies that the LMMSE estimator is a
very good alternative to the optimal MMSE estimator.

6. CONCLUSION

In this paper, we have proposed a controlled noise aided Bayesian
estimation scheme. The controlled noise acts like a low-pass filter in
the domain of CF. Assuming that the controlled noise is Gaussian,
the problems of the optimal controlled noise design and bit alloca-
tion, in the sense of maximizing the Fisher information at the FC,
were solved jointly. A near-optimal linear MMSE estimator was
also proposed in this paper, which is computationally efficient. Nu-
merical results justify our theoretical derivation. One interesting fu-
ture work is to relax the Gaussian assumption on the controlled noise
while designing the optimal realizable low-pass filter, so that the per-
formance can be further improved.
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