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ABSTRACT

The estimation of the mixing matrix as well as the number of
sources in blind source separation are two challenging prob-
lems. This paper proposes an effective estimation method
to solve these two problems for underdetermined blind sep-
aration of overlapped sources in short-time Fourier transform
(STFT) domain. Our study considers the blind estimation of
the mixing matrix based on subspace projection as well as
clustering methods, and the number of sources can be there-
fore estimated by counting the columns of the estimated mix-
ing matrix. The proposed estimation method is noise-robust
and suitable for the sources whose spectral contents are high-
ly overlapped in STFT domain. Numerical results on speech
sources are presented to illustrate the effectiveness and ro-
bustness of the proposed method.

Index Terms— Estimation of mixing matrix, estimation
of number of sources, underdetermined blind source separa-
tion, short-time Fourier transform

1. INTRODUCTION

Recently, the combination of blind source separation (BSS)
and time-frequency (TF) distributions has received substan-
tial attention. In [1], the authors proposed a spatial time-
frequency distribution BSS (STFD-BSS) algorithm based on
the diagonalization of a combined set of spatial TF matrices.
The main requirement of STFD-BSS is the selection of auto-
term or cross-term TF points. In [2], two STFD based under-
determined BSS (STFD-UBSS) algorithms were proposed for
TF overlapped source separation by signal synthesis. Com-
pared to the STFD-BSS [1], the STFD-UBSS does not require
TF point selection, and it is more robust to noise since only
the localized source TF features are used for signal synthesis.

Our research emphasis is put on the short-time Fourier
transform (STFT) based UBSS in [2] since the STFT is easy
to implement and no cross-term issue is involved. For the
STFT-UBSS algorithm, the essential problem lies in the es-
timation of the mixing matrix, which is crucial for final BSS
performance. The estimation of the mixing matrix based on
the STFT can be found in [3, 4, 5]. However, the methods
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therein have limitations, i.e. the method in [3] is only suit-
able for two speech mixtures, and the methods in [4, 5] are
designed only for real mixing matrix. In [2], the complex
mixing matrix estimation of sources with overlapped spec-
tral contents was estimated by clustering the single-source T-
F points. The single-source points are detected by selecting
the TF points in STFT domain with sufficient strong energy.
However, when the number of sources increases, more multi-
source TF points satisfying the strong energy requirement will
appear, which will significantly influence the estimation accu-
racy of the mixing matrix.

Besides, the mixing matrix in above references is estimat-
ed assuming that the number of sources is a known parame-
ter. However, in many practical situations, the information of
number of sources is undetermined, therefore an estimation
of the number of sources is indispensable. Relatively little
work has focused on the estimation of the number of sources
[6]. Two advanced clustering methods were used for automat-
ically estimate the number of sources in [7], nevertheless, the
sources are assumed to be nonoverlapped in TF domain.

In this paper, we aim to further develop the STFT-UBSS
algorithm proposed in [2] on the estimation of the mixing ma-
trix assuming that the sources are overlapped in TF domain
and the number of sources is unknown. We design a method
based on subspace analysis and clustering methods to accu-
rately estimate complex mixing matrix without knowing the
number of sources, which can be simultaneous estimated by
counting the column number of the estimated mixing matrix.

This paper is organized as follows. We briefly introduce
the system model in Section 2. In Section 3, the proposed
method of estimating the mixing matrix as well as the num-
ber of sources is elaborated. In Section 4, the proposed es-
timation method is evaluated on some speech mixtures and
the comparison with the one in the STFT-UBSS algorithm is
presented. Finally, Section 5 gives the concluding remarks.

2. SYSTEM MODEL

Let s,(t),n = 1,..., N, denote the sources (NN is the num-
ber of sources), and z,,,(t),m = 1,..., M, be the received
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mixtures (M is the sensor number):

x(t) = As(t) +n(t) (1)
where the M x N matrix A denotes the mixing matrix. We
assume M < N since we are in underdetermined cases. n(t)
is additive noise.

The sources are allowed to be non-disjoint in STFT do-
main, and the same assumption as in [2] is made: the number
of sources at any TF point is less than M.

3. ESTIMATION OF ”A” AND ”N”

3.1. Estimation method in the STFT-UBSS algorithm

In [2], the single-source TF points are firstly selected by de-
tecting the TF points with strong energy, and then the mixing
matrix is estimated by using the k-means clustering method
assuming that the number of sources is known, and assuming
for each source, we can always find some TF points, where
only this source occurs. We mark the estimation method of A
in [2] Method 1, which is described as follows:

i) The TF point set Q) which corresponds the single-source
points is firstly found by using the criterion below for
each time-slice:

IS (£, £l
— T > ¢ 2
mazg ||Sz (¢, )|
where || - || denotes the norm operator, S, (t, f) is the

STFT value vector of the mixtures x(t), and € is an
empirical threshold value which selects the TF points
with very strong energy. All the TF points which satisfy
this criterion will be included in the set €.

ii) Secondly, we compute the spatial direction vector for
each TF point in set ).
v(t, f) = e (Gf) e 3)
1S (t, I

And then, the k-means clustering method is conducted
on the spatial vectors of all TF points in €} to estimate
the mixing matrix assuming N is known.

The Method 1 has two imperfections. Firstly, the selection
of single-source TF points according to (2) has a significan-
t influence on the mixing matrix estimation. In many cases,
however, many TF points with strong energy in {2 may contain
multiple sources, which will significantly impact the estima-
tion accuracy of the mixing matrix. Secondly, the desirable
TF points of estimating the mixing matrix are not actually the
TF points where only one source exists. In the following pro-
posed method, we will prove that the desirable TF points are
actually the points where the energy of one source is domi-
nant over those of other sources and noise power.
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3.2. The proposed estimation method

In our study, we firstly demonstrate that the dominant TF
points are the appropriate points for mixing matrix estima-
tion by analyzing the mean square error (MSE) of the spatial
vectors of the estimated mixing matrix.

The Method 1 regards all the points in {2 as single-source
TF points. Instead, we assume the TF points in 2 are either
single-source points or double-source points !. Defining two
source STFT values Ss, and Ssj for each double-source TF
point in €2, and we define a dominance parameter A:

i,je{1,2,...,N}. 4)

When A is a big value at this double-source TF point, we
say this point is dominant by source 7. Let [a;, a;] denotes the
steering vectors of source ¢ and j at each double-source point
in 2, which gives:

Sz1 (4251 aj1

A - S
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The ideal steering vector of the source ¢ can be computed
from (5):
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where a;,, = ﬁe‘j%ﬂd(m_l)“”w”, m e {l,...,M}, and
d is the interelement spacing, A is the wavelength, and 6; de-
notes the direction of arrival (DOA) of source i.

The normalized STFT observation value in (3) at each

point in €2 is approximated as the steering vector estimation:
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The estimation error of a; can be evaluated by computing
the MSE according to (6) and (7):

VI+HA+1-)
V1+ A2

which is an increasing function signifying that the estimation
accuracy highly depends on the dominance parameter \, i.e.,
the larger A is, the lower MSE we obtain. The estimation
error will be further mitigated because the final estimation of

MSEZ :Hal *aiHQ ~

®)

't is possible some TF points in {2 may contain more than two sources,
but this seldom happens and is not considered in this paper.
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Fig. 1. Three possible situations of TF points in set ).

the steering vector of the source ¢ will be averaged over all the
detected points dominated by the source ¢. The above analysis
process is also effective for single-source points by replacing
S,, with o, i.e., A = 15l

The aforementioned analysis proves that the TF points
used for the mixing matrix estimation are those with domi-
nant energy but the single-source TF points. Fig. 1 illustrates
three possible situations of TF points in set {2: one single-
source TF point and two double-source TF points, where we
use an energy threshold to discriminate source and noise.
Three observations can be made. Firstly, single-source TF
points with a low value of A\ are undesirable for mixing ma-
trix estimation. Secondly, the TF points with strong energy
in 2 may contain double-source TF points. Lastly, some
double-source TF points are desirable for estimation as long
as these points have a high value of \.

Next, we design a method to accurately estimate the mix-
ing matrix and the number of sources. The essential idea of
the proposed method is to extract all the dominant TF points
from the set 2. Compared to Method 1, the proposed method
defines the following relaxed assumptions based on €2:

, and o is noise deviation.

o We assume there are two sources at each TF point of the
set ) instead of assuming only single-source TF points;

e For each source, we can always find some TF points,
where the energy of this source is dominant over those
of other sources and noise power;

The proposed method is called Method 2 in the rest of the
paper, which is described as follows:

i) Applying k-means clustering method to classify all the
spatial direction vectors in the set ) given a fixed clus-
ter number Ny, which is generally set to be larger than
10. Then, a column vector is estimated by averaging
all the direction vectors in each cluster, thus we obtain
a M x Ny mixing matrix Ayg.

ii) The STFT values of the two sources at each point can
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be estimated by:

Ssa,

/gs(tvf): |:S :| :Agsw(tvf) 9

Sag
where § denotes the Moore-Penrose’s pseudoinversion
operator. Ay = [a,,,a,,]| are the steering vectors of
two sources present at each point in ). For each point,
we try to find out the optimal a,, and a,, from the
estimated A by minimizing the subspace projection:

{aa,,a0,} = arg agm;gj
1’ 2

{Psma, f)} (10)

I — Ay(ATAL)"PAL is the orthogo-
nal projection matrix onto noise subspace of A, and
Ay =[ag,,ag,], f1,82 € {1,..., No}. The dominant
TF points are selected by defining a threshold \y:

maz[]|Ssq, |I; [[Ssa, |
min||Ss, |l 1S5, ]

where P =

> Ao (11
We define the set )3 which contains all the TF points in
Q which satisfy (11).

iii) Finally, the mean-shift clustering method [8] without

knowing N is implemented on the set ). The number

of sources is determined by the number of clusters, and

the mixing matrix can be obtained by averaging all the

direction vectors in each cluster.

Next, we discuss why Ay for each TF point in €2 can be
effectively obtained from A via the minimization process in
(10). The estimated Ay by k-means clustering method in the
first step of Method 2 can be expressed as follows:

| —_—— —
A0_|:2132~~-3N A12a13 - A(N_1)N 0th67’81| (12

which denotes that Ag is generally comprised of three parts:
pure steering vectors from N sources, mixed steering vectors
by N sources and other cases, e.g. distorted steering vec-
tors due to noise. The optimal a,, and a,, will be detected
from the first part of Ay since the minimization process will
always choose the purer steering vectors. Specifically, for the
TF points with two source 7 and 7, 4,j € {1,..., N}, the re-
sultant a,, and a,, by implementing (10) will be the purest
vectors of source ¢ and source j among the first part of Ag.
For the single-source TF points with source ¢ in €2, one of a,,
and a,, comes from the first part of Ay, whereas the other
one could be any column vector of Ay due to random noise.
However, this random spatial vector will not cause detrimen-
tal effect on the ratio computation in (11).

4. SIMULATION

In this section, numerical results are given to show the effec-
tiveness and robustness of Method 2 on the estimation of A
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Fig. 2. Two-dimensional scattered view of € and €2, by plot-
ting the first two elements of S, (¢, f) (SNR=20dB).

Table 1. Estimation of NV using Method 2 on 4 (Ao = 50)

~

N
SNR 2 3 4 5 6 78
20dB 0 0 100% O 0 0O
15dB 0 1% 98% 1% 0 00
10dB 0 3% 93% 4% 0 00
5dB 0 2% 82% 15% 1% 0 0
0dB 015% 75% 9% 1% 0 0

and N. We use a uniform linear array, and 4 speech sources
and 3 sensors are used. The N sources are from different
DOAs: 6; = 15°, 62 = 30°, 83 = 45°, and 6, = 75°. The
speech sources with 2.5s duration are highly overlapped in
STFT domain. The value of Ny in Method 2 is set to 12.

Fig. 2(a) shows the set () obtained from (2) by setting
€o = 0.3. The corresponding N ideal steering vectors marked
by red circles in Fig. 2 reveal that the set ) via the criterion
(2) cannot provide an accurate estimation of A. The detected
dominant set €24 using Method 2 is shown in Fig. 2(b) and (c)
by setting Ao = 20 and A\g = 50, respectively. It is seen that
the detected dominant points are very close to the ideal cen-
troids of the steering vectors. Based on the set {2, the number
of sources will be overestimated by using clustering meth-
ods. We implement the mean-shift clustering method on the
set 4, and the estimation performance of number of sources
for different SNRs is displayed in Table 1. We can note that
Method 2 can accurately estimate the number of clusters since
the clusters in €24 are clearly separated.

Lastly, the estimation performance of A using Method 1
and Method 2 is shown in Fig. 3. It is observed that the perfor-
mance of Method 1 is limited due to the inaccurate detection
of single-source TF points. In contrast, the good performance
of Method 2 verifies that the dominant TF points are the de-
sirable TF points for accurate estimation of A.
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Fig. 3. Normalized MSEs of estimation of A vs. different
SNRs using Method 1 and Method 2.

5. CONCLUSION

In this paper, a robust estimation method for the mixing ma-
trix as well as the number of sources is proposed for under-
determined blind separation of nondisjoint sources in STFT
domain. The proposed estimation method for complex mix-
ing matrix can be also applied for other applications with real
mixing matrix, e.g. communication signal separation. Fur-
thermore, the accurate estimation results of the mixing matrix
and the number of sources can well improve the source sepa-
ration performance in a totally blind environment.

6. RELATION TO PRIOR WORK

The study in this paper is an extension of the STFT-UBSS al-
gorithm in [2]. The number of sources in [2] is assumed to
be known. In addition, the estimation performance of mix-
ing matrix in [2] is limited by the cases where the spectral
contents of sources are highly overlapped in TF domain. The
novelty of this paper lies in the proposed estimation method,
which can more accurately estimate mixing matrix for high-
ly TF overlapped sources by detecting dominant TF points
with unknown number of sources. Another limitation of the
method in [2] lies in the optimal selection of €y in (2) for
different applications. The proposed method avoids the op-
timal selection of ¢y by detecting dominant TF points from
an initial set €2, which can be obtained by setting a relatively
small value of €y. Although the dominant points are detected
by evaluating a value of Ao, however, final estimation perfor-
mance is not sensitive to this parameter, and it can allow an
evaluation of wide dynamic range as denoted in Fig. 2.
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