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ABSTRACT

We consider the problem of estimating the scatter matrix in com-

plex elliptically symmetric (CES) distributions using the expected

likelihood (EL) approach. The latter, originally derived in the Gaus-

sian case, is based on the fact that the probability density function

(p.d.f.) of the likelihood ratio (LR) for the (unknown) actual covari-

ance matrix does not depend on this matrix, and is fully specified

by the matrix dimension M and the number of independent training

samples T . We extend this result to CES distributions as well as to

angular central Gaussian (ACG) distributions. More precisely, we

prove that for CES distributions, the p.d.f. of the LR, evaluated at

the true scatter matrix Σ0, does not depend on the latter but depends

on the density generator of the CES distribution. As for the ACG

case, we demonstrate that the LR for Σ0 is distribution-free. This

invariance property paves the way to derivation of regularized co-

variance matrix estimates, where the regularization parameters are

chosen from the EL principle. The relevance of such a choice for the

regularization parameters is illustrated on an example with fixed-

point diagonally loaded estimates.

Index Terms— Complex elliptically symmetric distributions,

covariance matrix estimation, expected likelihood principle, likeli-

hood ratio, regularization.

1. INTRODUCTION

Covariance matrix estimation plays a central role in many array pro-

cessing applications, including direction of arrival estimation, de-

sign of adaptive filters or adaptive detection. Most often, the max-

imum likelihood (ML) approach is invoked due to its good asymp-

totic properties. However, in small sample support, adaptive filters

based on ML estimation of the disturbance covariance matrix do not

perform well. At least, they can be significantly improved over, in

terms of output signal to noise ratio (SNR) and measure of effec-

tiveness, by regularization schemes such as diagonal loading [1].

Moreover, the ML estimator yields the ultimate equal to one value

for the likelihood ratio (LR) which, as argued in [2, 3], is question-

able. Indeed, in the Gaussian case, it was demonstrated in [2, 3] that

the probability density function (p.d.f.) of LR(R0) (where R0 is

the true (actual) covariance matrix) does not depend on R0 and is

fully specified by matrix dimension M and number T of indepen-

dent identically distributed (i.i.d.) samples. Moreover, this p.d.f.

is concentrated around values of LR(R0) which are much lower
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than 1. This quite remarkable invariance property led to the devel-

opment of the so-called “Expected Likelihood” (EL) approach. The

latter postulates that any covariance matrix estimate (CME) should

result in a LR which is commensurate with that of the true covari-

ance matrix, and this value of the LR can be pre-calculated, due to

the above mentioned invariance property of LR(R0). The EL prin-

ciple is therefore a statistically sound method to assess the “qual-

ity” of any (possibly parameterized or regularized) covariance ma-

trix estimate R(Ω̂) by comparing its likelihood ratio LR(R(Ω̂))
against the p.d.f. for LR(R0). Its relevance has been demonstrated

e.g. in [2, 4] where the EL principle allows for detection of severely

erroneous MUSIC-based DOA estimates in the so-called threshold

area (breakdown prediction), and rectification of the latter in order

to meet the expected likelihood ratio values (breakdown cure). Sim-

ilarly, for adaptive detection problems, the EL approach was instru-

mental in designing regularized CME, whose regularization param-

eters are chosen such that the so-obtained CME is statistically as

likely as the unknown actual covariance matrix [3].

However, in a large number of radar applications, the tradi-

tional assumption on training data being a set of i.i.d complex

Gaussian random samples is strongly violated due to a significant

in-homogeneity of this data. The latter has been often modeled as

spherically invariant random vectors (SIRV), i.e., as a product of a

positive valued random variable (r.va.) called texture and an inde-

pendent complex Gaussian random vector (r.v.) called speckle [5].

This so-called compound Gaussian model belongs to the broader

class of complex elliptically symmetric (CES) distributions which

have recently gained much interest for array processing applica-

tions [6] and particularly for covariance matrix estimation prob-

lems [7, 8]. Therefore, the main issue addressed in this paper is

to extend the EL principle to the class of CES distributions. More

precisely, we show that the likelihood ratio LRCES(Σ), where Σ is

the scatter matrix, proportional to the covariance matrix, shares the

required for EL invariance principle: its p.d.f. for Σ = Σ0 does not

depend on Σ0. However, it depends on a one-dimensional function

g(t) called the density generator of the CES distribution. Since g(t)
is unknown in practice, it becomes desirable to have invariance also

with respect to the unknown function g(.). We thus also consider

complex angular central Gaussian (ACG) distributions, obtained

by normalization of the r.v. x ∼ CEM (0,Σ, g) by its L2 norm:

z = x/ ‖x‖2. We prove that LRACG(Σ0) is now completely

invariant with respect to both Σ0 and g(t) in the CES distribution

that describes r.v. x. This invariance property allows for design of

regularized CME using the EL principle. We illustrate this fact with

fixed-point diagonally loaded scatter matrix estimates.
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2. LIKELIHOOD RATIO FOR CES DISTRIBUTIONS

2.1. CES distributions

We refer the reader to [6] for a very comprehensive review along

with application of CES distributions to a number of array process-

ing problems. A random vector x ∈ C
M ∼ CEM (0,Σ, g) if it

admits the following stochastic representation

x
d
= RAu (1)

where the non-negative real random variable R ,
√
Q, called mod-

ular variate, is independent of the complex random vector u, which

is uniformly distributed on the complex sphere CSM , i.e., u ∼
U
(

CSM
)

. Σ = AA
H is a factorization of Σ and the latter is

referred to as the scatter matrix. Herein,
d
= means “has the same dis-

tribution as”. Let the p.d.f. f(Q) of the modular variate Q be given

by f(Q) = δ−1
M,gQM−1g(Q) where g : R

+ −→ R
+ is called

the density generator. We consider herein the absolutely continuous

case where Σ is non singular. Then the p.d.f. of x is given by

f(x|Σ, g) = CM,g|Σ|−1g
(

x
H
Σ

−1
x

)

(2)

where CM,g = 2(SMδM,g)
−1 and SM = 2πM/Γ(M) denotes the

surface area of CSM . Under the assumption that E {Rp} < ∞, one

has E
{

xx
H
}

= M−1E
{

R2
}

Σ and thus the scatter matrix Σ is

proportional to the covariance matrix. Since the couple (g,Σ) does

not uniquely identify f(x|Σ, g), a scale constraint on g(.) or Σ is

usually enforced: herein, we assume that E
{

R2
}

= M and hence

cov(x) = Σ.

We assume that T i.i.d r.v. xt ∼ CEM (0,Σ, g) are available

so that the joint p.d.f. of XT =
[

x1 · · · xT

]

∈ C
M×T can be

written as

f(XT |Σ, g) = CT
M,g|Σ|−T

T
∏

t=1

g(xH
t Σ

−1
xt). (3)

For T ≥ M , the maximum likelihood estimator (MLE) of the scatter

matrix Σ is the solution to the estimating equation [6, 9, 10]

ΣML = T (ΣML) =
1

T

T
∑

t=1

φ(xH
t Σ

−1
ML xt)xtx

H
t (4)

where φ(t) , −g′(t)/g(t). In [6] based on the results of Kent and

Tyler [9, 10] for the real case, the uniqueness and convergence of

the fixed point iterations (ΣML)k+1 = T
[

(ΣML)k
]

to the unique

solution of (4), for any initial estimate of Σ, has been proven under

certain technical conditions.

2.2. Likelihood ratio for CES distributions

Our goal is to estimate Σ using the EL principle. Towards this end,

a first step consists in deriving the likelihood ratio for the true scat-

ter matrix. We start with a parametric scatter matrix model Σ(Ωℓ)
where Ωℓ is a set of ℓ parameters that uniquely specify the scat-

ter matrix model. The LRCES (Σ(Ωℓ)|XT ) is obtained from (3)

as [11]:

LRCES (Σ(Ωℓ)|XT , g) =
f(XT |Σ(Ωℓ), g)

maxΣ f(XT |Σ, g)

= |ΣMLΣ
−1(Ωℓ)|T

T
∏

t=1

g(xH
t Σ

−1(Ωℓ)xt)

g(xH
t Σ

−1
ML xt)

. (5)

Now, using the stochastic representation of xt in (1), the expected

likelihood, i.e., the LR value for the actual (true) scatter matrix Σ0

is given by

LRCES (Σ0|XT , g)
d
= |A|T

T
∏

t=1

g(Qtu
H
t ut)

g(Qtu
H
t A

−1
ut)

(6)

where ut ∼ U
(

CSM
)

and A , Σ
−1/2
0 ΣMLΣ

−1/2
0 . Pre and post-

multiplying (4) by Σ
−1/2
0 and using (1) we get

A =
1

T

T
∑

t=1

φ(Qtu
H
t A

−1
ut)Qtutu

H
t (7)

whose distribution clearly depends on g(.) but not on Σ0. Conse-

quently, the p.d.f. of LRCES (Σ0|XT , g) is invariant with respect

to (w.r.t) the true scatter matrix Σ0, and is specified only by f(Q),
M and T .

2.3. Likelihood ratio for ACG distributions

In most practical applications, f(Q) is not precisely known, hence

the need to investigate estimation schemes which do not require this

knowledge. The usual way to proceed is to normalize the vectors xt,

i.e., to use as input data

zt =
xt

‖xt‖2
. (8)

If x ∼ CEM (0,Σ, g), then z follows a complex angular central

Gaussian (ACG) distribution, which we denote as z ∼ CAG (0,Σ).
For non-singular Σ, the p.d.f. for z is given by [6, 12]

f(z|Σ) = S−1
M |Σ|−1

(

z
H
Σ

−1
z

)−M

. (9)

Assuming independence of the zt, the joint distribution of ZT =
[

z1 · · · zT

]

is thus given by

f(ZT |Σ) = S−T
M |Σ|−T

T
∏

t=1

(

z
H
t Σ

−1
zt

)−M

. (10)

In [12] the MLE of Σ was shown to be the solution to

ΣML =
M

T

T
∑

t=1

ztz
H
t

zH
t Σ

−1
ML zt

. (11)

The estimate (11) is also the MLE of Σ under the more general as-

sumption xt ∼ CEM (0, τtΣ, gt) with the functions gt being given

but not necessarily the same [6]. Moreover, the fixed point iterations

Σk+1 =
M

T

T
∑

t=1

ztz
H
t

zH
t Σ

−1
k zt

(12)

converge to ΣML which exists and is unique up to a positive scalar.

Let us study the EL approach as an alternative to MLE. For a

(possibly parameterized ) scatter matrix Σ(Ωℓ), the likelihood ratio

in the ACG case is given by

LRACG (Σ(Ωℓ)|ZT ) =
f(ZT |Σ(Ωℓ))

maxΣ f(ZT |Σ)

= |ΣMLΣ
−1(Ωℓ)|T

T
∏

t=1

[

z
H
t Σ

−1(Ωℓ)zt

zH
t Σ

−1
ML zt

]−M

. (13)
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Using the fact that zt = xt
‖xt‖2

d
=

Σ
1/2
0

ut
∥

∥

∥
Σ

1/2
0

ut

∥

∥

∥

2

where ut ∼

U
(

CSM
)

or ut ∼ CN (0, I), it follows that

LRACG (Σ0|ZT ) = |ΣMLΣ
−1
0 |T

T
∏

t=1

[

z
H
t Σ

−1
0 zt

zH
t Σ

−1
ML zt

]−M

d
= |AACG|T

T
∏

t=1

[

u
H
t ut

uH
t A

−1
ACGut

]−M

(14)

where AACG = Σ
−1/2
0 ΣMLΣ

−1/2
0 verifies

AACG =
M

T

T
∑

t=1

Σ
−1/2
0 ztz

H
t Σ

−1/2
0

zH
t Σ

−1
ML zt

d
=

M

T

T
∑

t=1

utu
H
t

uH
t A

−1
ACGut

. (15)

ClearlyAACG is distribution-free and therefore, for any given T and

M (T ≥ M ) we can pre-calculate the p.d.f. for LRACG (Σ0|ZT )
with any required accuracy and use it as the expected likelihood

p.d.f. for quality assessment of any given scatter matrix model

Σ(Ωℓ).
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Fig. 1. Probability density function of LR
1/T
CES (Σ0|XT , g) and

LR
1/T
ACG (Σ0|ZT ). M = 12 and T = 24.

2.4. Illustrations

We illustrate the above theoretical results about the distributions of

LR
1/T
CES (Σ0|XT , g) and LR

1/T
ACG (Σ0|ZT ) and we investigate the

influence of g(.) onto the p.d.f. of the LR in the CES case. We

consider a uniform linear array of M = 12 elements with half-

wavelength separation. The true scatter matrix was considered to

be as per AR(1) process, i.e., [Σ0]m,n = ρ
|m−n|
0 and ρ = 0.99.

As for CES distributions, we consider a Gaussian distribution and

a multivariate Student t-distribution with d degrees of freedom, de-

fined herein as

f(x|Σ0) ∝ |Σ0|−1
[

1 + d−1
x

H
Σ

−1
0 x

]−(M+d)

(16)
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Fig. 2. Median value of LR
1/T
CES (Σ0|XT , g) and

LR
1/T
ACG (Σ0|ZT ) versus T . M = 12.

where ∝ means proportional to. In the sequel we set d = 1. The

p.d.f. of the above likelihood ratios is displayed in Figure 1 for

T = 24. As can be observed, the p.d.f. of LR
1/T
CES (Σ0|XT , g)

are very close to each other and depend weakly on g(.): they are

the same for g(t) = exp {−t} (Gaussian case) and g(t) = (1 +

t/d)−(d+M) (Student case). Moreover, they are very close to the

p.d.f. of LR
1/T
ACG (Σ0|ZT ). Therefore, the LR for the true scatter

matrix Σ0 shows quite an invariance with respect to the distribution

of the data. This is confirmed in Figure 2 where we plot the median

value of the LR as a function of T . Clearly, the three different distri-

butions result in almost the same median value. Note that the latter is

much lower than 1 which calls for regularization schemes that drive

down the LR compared to the MLE whose LR value is 1. This is the

object of the next section.

3. REGULARIZED SCATTER MATRIX ESTIMATION

USING THE EXPECTED LIKELIHOOD PRINCIPLE

As discussed above, the MLE in (11) obtained from the fixed point it-

erations in (12) yields the ultimate LRACG (ΣML|ZT ) = 1 value.

However, this estimate may not be that effective for adaptive pro-

cessing applications, since it is far more likely than the actual scat-

ter matrix Σ0. For this reason, regularization based on diagonal

loading or shrinkage-to-structure have been proposed in the litera-

ture. For instance, [13] considers time-varying autoregressive mod-

els TVAR(m). Due to lack of space, we consider here only the fol-

lowing scheme proposed initially in [14] and then in [7, 8]:

Σ(β) = (1− β)
M

T

T
∑

t=1

ztz
H
t

zH
t Σ

−1(β)zt

+ βIM (17)
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with the following iterative algorithm to obatin it:

Σk+1(β) = (1− β)
M

T

T
∑

t=1

ztz
H
t

zH
t (Σk(β))

−1
zt

+ βIM (18a)

Σk+1(β) =
M

Tr{Σk+1(β)}
Σk+1(β). (18b)

The proof of convergence of this iterative routine to the unique

solution of (17) has been recently introduced in [7] using Perron-

Frobenius theory. In [7] the authors suggested to specify the optimal

loading factor β as the one which minimizes the Frobenius norm of

the error, i.e.,

βO = argmin
β

E
{

‖Σ(β)−Σ0‖2F
}

=
M2 −M−1Tr{Σ0Σ

H
0 }

(M2 −MT − T ) + (T + (T − 1)/M)Tr{Σ0Σ
H
0 } (19)

where Σ(β) is given in (17). This optimal loading factor depends on

Σ0 which is unknown but, as suggested in [7], it could be replaced

by a consistent estimate. Herein, we are interested in applying the

EL principle to selection of β. More precisely, we propose to select

the loading factor β such that

LR
1/T
ACG (Σ(β)|ZT ) = |ΣMLΣ

−1(β)|
T
∏

t=1

[

z
H
t Σ

−1(β)zt

zH
t Σ

−1
ML zt

]−M/T

= med [ω(LR|M,T )] (20)

where ω(LR|M,T ) is the true p.d.f. of LR
1/T
ACG (Σ0|ZT ), ΣML is

the complex Tyler’s M-estimate (12) and med [ω(LR|M,T )] stands

for the median value. Since strict equality may be difficult to obtain,

in practice we evaluate LR
1/T
ACG (Σ(β)|ZT ) on a grid of values for

β and pick the one which results in the LR closest to the median.

We now study whether or not the choice of the loading factor

from the EL principle is optimal. In order to evaluate the quality of

a CME Σ̂, we use the SNR loss

SNRloss =

(

s
H
0 Σ

−1
0 s0

)2

(

sH
0 Σ̂

−1
Σ0Σ̂

−1
s0

)

(

sH
0 Σ

−1
0 s0

)

(21)

where s0 =
[

1 eiπ sin θ0 · · · eiπ(M−1) sin θ0
]T

stands for the

steering vector corresponding to the looked direction θ0. We con-

sider here the estimate based on shrinkage of the NSCM

Σ̂ = (1− β)
M

T

T
∑

t=1

ztz
H
t + βIM (22)

(referred to as DL in the figures) and its fixed-point version in (17)-

(18), referred to as FP-DL in the figures. We compare both of them

to the oracle estimator and to the conventional MLE in Figure 3.

Interestingly enough, it appears that the oracle loading factor β0 in

(19) results in a matrix Σ(β) in (17) whose LR closely matches that

of Σ0. As a result, the SNR loss achieved by the oracle estimate is

very high. More interesting is the fact that the EL approach yields

the same LR value as the oracle estimate. Moreover, the EL and

the oracle estimate yields the same output SNR. This shows that se-

lection of β from the EL principle is as good as the oracle choice.

Finally, observe that the fixed point diagonal loading performs much

better than MLE, especially in low sample support.
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Fig. 3. Performance of diagonally loaded estimates versus number

of snapshots T . M = 12 and d = 1. (a) SNR loss (b) Mean value

of LR
1/T
ACG (Σ(β)|ZT ).

4. SUMMARY AND CONCLUSIONS

In this paper, we extended the expected likelihood methodology in-

troduced in [2, 3] to the class of complex elliptically symmetric dis-

tributions and complex angular central Gaussian distributions. We

demonstrated that for the true (a priori unknown) scatter matrix Σ0,

the p.d.f. of the likelihood ratio does not depend on this matrix, only

on the density generator g(.), the sample volume T and matrix di-

mension M . For ACG distributions, this p.d.f. is fully specified by

T and M only. This paved the way to regularized scatter matrix

estimation schemes where the regularization parameters are chosen

so that the associated LR complies with the support of the p.d.f. of

LR(Σ0).

6479



5. REFERENCES

[1] Y. I. Abramovich, “Controlled method for adaptive optimiza-

tion of filters using the criterion of maximum SNR,” Radio

Engineering and Electronic Physics, vol. 26, pp. 87–95, March

1981.

[2] Y.I. Abramovich, N.K. Spencer, and A.Y. Gorokhov, “Bounds

on maximum likelihood ratio-Part I: Application to antenna

array detection-estimation with perfect wavefront coherence,”

IEEE Transactions Signal Processing, vol. 52, no. 6, pp. 1524–

1536, June 2004.

[3] Y. I. Abramovich, N. K. Spencer, and A. Y. Gorokhov, “Modi-

fied GLRT and AMF framework for adaptive detectors,” IEEE

Transactions Aerospace Electronic Systems, vol. 43, no. 3, pp.

1017–1051, July 2007.

[4] Y. I. Abramovich, N. K. Spencer, and A. Y. Gorokhov, “GLRT-

based threshold detection-estimation performance improve-

ment and application to uniform circular antenna arrays,” IEEE

Transactions Signal Processing, vol. 55, no. 1, pp. 20–31, Jan-

uary 2007.

[5] E. Conte and M. Longo, “Characterisation of radar clutter as a

spherically invariant process,” IEE Proceedings Radar, Sonar

and Navigation, vol. 134, no. 2, pp. 191–197, April 1987.

[6] E. Ollila, D. Tyler, V. Koivunen, and H. Poor, “Complex el-

liptically symmetric distributions: survey, new results and ap-

plications,” IEEE Transactions Signal Processing, vol. 60, no.

11, pp. 5597–5625, November 2012.

[7] Y. Chen, A. Wiesel, and A. O. Hero, “Robust shrinkage

estimation of high-dimensional covariance matrices,” IEEE

Transactions Signal Processing, vol. 59, no. 9, pp. 4097–4107,

September 2011.

[8] A. Wiesel, “Unified framework to regularized covariance esti-

mation in scaled Gaussian models,” IEEE Transactions Signal

Processing, vol. 60, no. 1, pp. 29–38, January 2012.

[9] D. E. Tyler, “A distribution-free M-estimator of multivariate

scatter,” The Annals of Statistics, vol. 15, no. 1, pp. 234–251,

March 1987.

[10] J. T. Kent and D. E. Tyler, “Redescending M-Estimates of

multivariate location and scatter,” The Annals of Statistics, vol.

19, no. 4, pp. 2102–2119, December 1991.

[11] R. J. Muirhead, Aspects of Multivariate Statistical Theory,

John Wiley, 1982.

[12] D. E. Tyler, “Statistical analysis for the angular central Gaus-

sian distribution on the sphere,” Biometrika, vol. 74, no. 3, pp.

579–589, September 1987.

[13] Y. I. Abramovich, N. K. Spencer, and M. D. E. Turley, “Time-

varying autoregressive (TVAR) models for multiple radar ob-

servations,” IEEE Transactions Signal Processing, vol. 55, no.

4, pp. 1298–1311, April 2007.

[14] Y. I. Abramovich and N. K. Spencer, “Diagonally loaded nor-

malised sample matrix inversion (LNSMI) for outlier-resistant

adaptive filtering,” in Proceedings ICASSP, Honolulu, HI,

April 2007, pp. 1105–1108.

6480


