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ABSTRACT

We consider received-signal-strength-based robust geolocation in

mixed line-of-sight/non-line-of-sight propagation environments.

Herein, we assume a mode-dependent propagation model with un-

known parameters. We propose to jointly estimate the geographical

coordinates and propagation model parameters. In order to ap-

proximate the maximum-likelihood estimator (MLE), we develop

an iterative algorithm based on the well-known expectation and

maximization criterion. As compared to the standard ML imple-

mentation, the proposed algorithm is simpler to implement and

capable of reproducing the MLE. Simulation results show that the

proposed algorithm attains the best geolocation accuracy as the

number of measurements increases.

Index Terms— Expectation-maximization (EM) criterion, ge-

olocation, line-of-sight (LOS)/non-line-of-sight (NLOS), received-

signal-strength (RSS).

1. INTRODUCTION

Wireless geolocation has been of significant interest during the past

two decades due to the expanding location-aware services [1]. In

order to give a position estimate, we prefer to use a two-step geolo-

cation technique which comprises two phases: measurements collec-

tion phase and position estimation phase. Based on different types

of measurements, such as time-of-arrival (TOA), received-signal-

strength (RSS), and angle of arrival (AOA), a plethora of algorithms

have been proposed, see for instance [2] and references therein.

We focus on the position estimation using RSS measurements.

RSS-based algorithms are attractive for wireless geolocation due to

two main reasons. First, the RSS measurements are readily avail-

able in almost any wireless infrastructure, and therefore expensive

system update can be avoided. Second, RSS-based algorithms are

in general of low-complexity, and thus can be easily integrated into

other geolocation systems [2, Chapter 11].

We consider a specific geolocation problem where the propa-

gation condition may switch between line-of-sight (LOS) and non-

LOS (NLOS) in wireless networks. In contrast to the vast majority

of papers in the literature, we assume a mode-dependent propaga-

tion model in order to well capture the switching between LOS and

NLOS. Rather than assuming that the propagation model parame-

ters are known, we estimate them jointly with the unknown geo-

graphical coordinates. Herein, we pursue the maximum-likelihood

estimator (MLE) due to its notable asymptotic performance, known

from classical estimation theory [3]. Unfortunately, the standard ML

implementation is too cumbersome. As an alternative, we propose

to design an iterative algorithm based on the expectation and max-

imization (EM) criterion [4], which is famous for its simple imple-

mentation and ability to reproduce the MLE.

The remainder of this paper is organized as follows. In Sec-

tion 2, we introduce the signal model and state the problem at hand.

In Section 3, we briefly introduce the standard way of solving our

estimation problem. Section 4 describes our newly proposed algo-

rithm, which is developed in light of the EM criterion, followed by

simulation results in Section 5. Finally, we relate our original con-

tributions to prior work in Section 6.

2. SIGNALMODEL

It is assumed that M anchors surround a stationary agent to be lo-

cated in a wireless network. Let xm = [xm, ym]T be the known

geographical coordinates of the mth anchor and let x = [x, y]T be

the unknown geographical coordinates of the agent. Here, we con-

sider a centralized geolocation process, in which we collect K av-

eraged (over a time interval T ) received-signal-strength (RSS) mea-

surements at each anchor. The kth averaged RSS measurement col-

lected at the mth anchor, z
(m)
k (dBm), is modeled by

z
(m)
k = PT − L

(m)
k (r

(m)
k )

︸ ︷︷ ︸

h
(m)
k

(r
(m)
k

)

+v
(m)
k (r

(m)
k ), (1)

for k = 1, 2, ..., K and m = 1, 2, ...,M , where PT (dBm) is a

known transmit power of the agent; r
(m)
k is a mode variable, indicat-

ing the current propagation condition; L
(m)
k (r

(m)
k ) denotes the path

loss and v
(m)
k (r

(m)
k ) is an error term accounting for the shadowing

effect (both in dB scale). Here, we set r
(m)
k = 1 for LOS condi-

tion or r
(m)
k = 2 for NLOS condition and assume both the path

loss and the error term are dependent on the current mode r
(m)
k . We

stress, however, that r
(m)
k is unknown. Besides, we assume multi-

path fading effect in z
(m)
k has been effectively eliminated by an a

priori time-averaging [5, Chapter 2].

As the propagation condition may switch between LOS and

NLOS, we follow the mode-dependent log-distance path loss model

(in dB scale) as defined in [6, 7, 8]. That is,

L
(m)
k (r

(m)
k )=







ALOS+10BLOS log10

(
dm(x)

d0

)

, r
(m)
k = 1

ANLOS+10BNLOS log10

(
dm(x)

d0

)

, r
(m)
k = 2

(2)
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where the column vector β1 includes parameters ALOS and BLOS de-

noting a reference path loss value at d0 = 1 kilometer (km) and a

path loss exponent value, respectively; analogously, column vector

β2 includes parameters ANLOS and BNLOS representing the counter-

parts under the NLOS condition; and dm(x) denotes the distance

between the agent and the mth anchor, i.e.,

dm(x) =
√

(x− xm)2 + (y − ym)2.

The shadowing effect is also mode-dependent. Hence, we assume

v
(m)
k (r

(m)
k = 1) = v

(m)
LOS,k ∼ N (v; 0, σ2

1) under the LOS condi-

tion, whereas v
(m)
k (r

(m)
k = 2) = v

(m)
NLOS,k ∼ N (v; 0, σ2

2) under the

NLOS condition. The standard deviation σ2 (dB) is usually much

larger than σ1 (dB) reflecting the fact that the shadowing effect is

more prominent under the NLOS condition.

In general, the switching between LOS and NLOS is time-

dependent and favorable to be modeled by a 2-state Markov chain

[9] with mode variable r
(m)
k . Herein, we assume the Markov chain

is time-homogeneous and regular, from which it follows that the

Markov chain will converge to a unique stationary distribution as

k →∞ [10], namely,

lim
k→∞

Pr{r
(m)
k = l} = α

(m)
l , l = 1, 2,

where α
(m)
l denotes the probability of the mth anchor being in the

lth mode (l = 1 for LOS or l = 2 for NLOS) and α
(m)
1 + α

(m)
2 =

1. Since we consider here a homogeneous environment, we assume

α
(1)
l = α

(2)
l = ... = α

(M)
l = αl, l = 1, 2.

In the sequel, we focus on snapshot-based estimator design us-

ing RSS measurements z
(m)
k , k = 1, 2, ..., K and m = 1, 2, ...,M .

In order to facilitate the algorithm design as well as the measurement

generation, we assume the shadowing errors v
(m)
k , k = 1, 2, ..., K

and m = 1, 2, ...,M are independent and identically distributed

(i.i.d.) random variables with a two-mode Gaussian mixture dis-

tribution, to which the Markov chain will converge as k increases.

Hence, we have

p(z
(m)
k ) =

2∑

l=1

αlN
(

z
(m)
k ;h

(m)
k (r

(m)
k = l), σ2

l

)

.

For ease of subsequent interpretation, we introduce a vectorized

signal model as follows:

z = h(r) + v(r)

where the vector notations are of the form:

r=[r
(1)
1 , ..., r

(1)
K , ..., r

(m)
1 , ..., r

(m)
K , ..., r

(M)
1 , ..., r

(M)
K ]T

z=[z
(1)
1 , ..., z

(1)
K , ..., z

(m)
1 , ..., z

(m)
K , ..., z

(M)
1 , ..., z

(M)
K ]T

h(r)=[h
(1)
1 (r

(1)
1 ), ..., h

(1)
K (r

(1)
K ), ..., h

(M)
1 (r

(M)
1 ), ..., h

(M)
K (r

(M)
K )]T

v(r)=[v
(1)
1 (r

(1)
1 ), ..., v

(1)
K (r

(1)
K ), ..., v

(M)
1 (r

(M)
1 ), ..., v

(M)
K (r

(M)
K )]T .

Column vectors r, z, h, and v are all of dimension MK × 1. In

the sequel, we introduce N = MK to indicate the total number of

RSS measurements and use r(i), z(i), h(i)(r(i)), and v(i)(r(i)) to

represent the ith entry of the corresponding vectors defined above.

Throughout this paper we refer to α1, α2, ALOS, BLOS, ANLOS,

BNLOS, σ2
1 , and σ2

2 as mode-dependent propagation model parame-

ters. Rather than assuming that they are readily known from some

foregoing off-line calibrations (e.g., [11]) or sophisticated estima-

tion procedures with auxiliary information (e.g., [12]), we propose

to estimate them jointly with the unknown geographical coordinates.

3. STANDARDMAXIMUM-LIKELIHOOD

IMPLEMENTATION

Defining a vector parameter θ = [α1, α2,β
T
1 ,β

T
2 , σ

2
1 , σ

2
2 ,x]

T , we

can easily express the log-likelihood function of a realization of z

conditioned on θ, namely,

L(θ; z) = ln

(
N∏

i=1

p(z(i);θ)

)

. (3)

By introducing z̃
(i)
l (x,βl) = z(i) − h(i)(r(i) = l) for l = 1, 2, we

then re-write (3) as

L(θ; z) =
N∑

i=1

ln

(
2∑

l=1

αlN
(

z̃
(i)
l (x,βl); 0, σ

2
l

)
)

. (4)

The maximum-likelihood estimate θ̂ML is the solution of the fol-

lowing optimization problem:

maximize
θ

L(θ;z)

subject to 0 < α1, α2 < 1, α1 + α2 = 1,

σ2
1 > 0, σ2

2 > 0.

(5)

The cost function, cf.(4), contains “the logarithm of the sum”, im-

plying difficulties in obtaining the MLE. Instead of solving (5) with

tremendous efforts, we take a detour to approximate the MLE by

using the EM criterion.

4. EXPECTATION-MAXIMIZATION ALGORITHM

Before we apply the EM criterion to our estimation problem,

let us first introduce a complete data set ̟ = {y, z} with

y = [y(1), y(2), . . . , y(N)]T denoting a vector of N random vari-

ables (also called latent variables) whose values tell us which mix-

ture component has generated (or which propagation condition has

led to) the corresponding path loss and error term. Since z(i),
i = 1, 2, ..., N are independent and y(i), i = 1, 2, ..., N are inde-

pendent as a consequence, the complete data log-likelihood function

can be easily expressed by

L(θ;y, z) =
N∑

i=1

ln
(

αy(i)N
(

z̃
(i)

y(i)(x,βy(i)); 0, σ
2
y(i)

))

.

In the sequel, we apply the EM criterion to the complete data

model to approximate the MLE. The designed iterative algorithm is

called “EM algorithm” in the remaining parts of this paper. Given

a realization of z and the a priori parameter estimate θ(η), the pro-

posed EM algorithm alternates between the following two steps on

the (η + 1)th iteration.

Expectation Step: As the first step, we perform expectation of

the complete data log-likelihood in terms of y. Since y is discrete-

valued, we have

Q
(

θ; θ(η)
)

=
∑

y∈Υ

ln(p(y,z;θ))Pr
{

y|z;θ(η)
}

where Υ is the parameter space of y and Pr
{

y|z; θ(η)
}

is a condi-

tional probability of the latent variables y. Sticking to the procedure

used for simplifying Q
(

θ;θ(η)
)

in [13], we finally have

Q
(

θ; θ(η)
)

=

N∑

i=1

2∑

l=1

ln
(

αlN
(

z̃
(i)
l (x,βl); 0, σ

2
l

))

P̃
(η)
l,i (6)
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where P̃
(η)
l,i is a short-hand notation of the conditional probability

Pr
{

l|z(i);θ(η)
}

due to Bayes’ rule:

Pr
{

l|z(i); θ(η)
}

=
α
(η)
l N

(

z̃
(i)
l (x(η),β

(η)
l ); 0, σ

2,(η)
l

)

p (z(i);θ(η))
. (7)

Maximization Step: In the second step, we update the parame-

ter estimate θ(η+1) through maximizing Q
(

θ;θ(η)
)

, derived in (6),

with respect to θ, that is,

θ
(η+1) = argmax

θ
Q
(

θ; θ(η)
)

.

For convenience, we reformulate Q
(

θ; θ(η)
)

as follows:

Q
(

θ; θ(η)
)

= Q0

(

α1, α2;θ
(η)
)

+
2∑

l=1

Ql

(

βl, σ
2
l ,x;θ

(η)
)

where

Q0

(

α1, α2;θ
(η)
)

,

N∑

i=1

ln(α1)P̃
(η)
1,i + ln(α2)P̃

(η)
2,i ,

Ql

(

βl, σ
2
l ,x;θ

(η)
)

,

N∑

i=1

ln
(

N
(

z̃
(i)
l (x,βl); 0, σ

2
l

))

P̃
(η)
l,i .

In order to obtain α
(η+1)
l that maximizes Q

(

θ;θ(η)
)

, we solve

∂

∂αl

[

Q0

(

α1, α2;θ
(η)
)

+ λ (α1 + α2 − 1)
]

= 0

where λ is the Lagrange multiplier. Consequently, we get

α
(η+1)
l =

1

N

N∑

i=1

P̃
(η)
l,i , l = 1, 2. (8)

Next, we update the estimate of βl, l = 1, 2 as follows:

β
(η+1)
l = argmax

βl

Ql

(

βl, σ
2
l ,x;θ

(η)
)

,

which is equivalent to, as per observation,

β
(η+1)
l = argmin

βl

N∑

i=1

(

z̃
(i)
l (x,βl)

)2

P̃
(η)
l,i . (9)

The cost function in (9) can be written as

N∑

i=1

(

z̃
(i)
l (x,βl)

)2

P̃
(η)
l,i = (ξ −Σβl)

T
Wl(ξ −Σβl)

where ξ = [z(1) − PT , z
(2) − PT , . . . , z

(N) − PT ]
T ,

Σ =








−1, −10 log10(d
(1)(x)/d0)

−1, −10 log10(d
(2)(x)/d0)

.

..
.
..

−1, −10 log10(d
(N)(x)/d0)







, (10)

and Wl = diag(P̃
(η)
l,1 , P̃

(η)
l,2 , . . . , P̃

(η)
l,N) is a diagonal matrix. In (10),

d(i)(x), i = 1, 2, ..., N , is the ith entry of

d(x) = [d1(x), . . . , d1(x)
︸ ︷︷ ︸

Krepetition

, ..., dM (x), . . . , dM (x)
︸ ︷︷ ︸

Krepetition

]T .

It is clear that β
(η+1)
l is a weighted least squares estimate given by

β
(η+1)
l =

(

Σ
T
WlΣ

)
−1

Σ
T
Wlξ. (11)

Since x in (10) is unknown, we replace it with x(η).

In order to obtain σ
2,(η+1)
l that maximizes Q

(

θ;θ(η)
)

, we take

the derivative of Ql

(

βl, σ
2
l ,x;θ

(η)
)

with respect to σ2
l and set it

equal to zero. The results are given by

σ
2,(η+1)
l =

N∑

i=1

(

z̃
(i)
l (x(η),β

(η+1)
l )

)2

P̃
(η)
l,i

N∑

i=1

P̃
(η)
l,i

, l = 1, 2, (12)

where x(η) and β
(η+1)
l replace x and βl, respectively.

Next, we find x(η+1) through maximizing Q
(

θ;θ(η)
)

in terms

of x, which is easily shown to be equivalent to

x
(η+1)=argmin

x

{

g(x) ,
N∑

i=1

2∑

l=1

(

z̃
(i)
l (x,βl)

)2 P̃
(η)
l,i

σ2
l

}

. (13)

Before performing the minimization, we replace β1, β2, σ2
1 and σ2

2

in (13) with their latest updates respectively. Since z̃
(i)
l (x,βl) con-

tains non-linear terms of x, we resort to numerical methods to find

x(η+1). Here, we adopt a BFGS quasi-Newton method as described

in [14] because it guarantees downhill progress towards the local

minimum in each Newton step, as reported in [15].

We repeat the E-step and M-step until some convergence con-

dition is met. The EM estimate obtained at the convergence is de-

noted by θ̂. We summarize the new algorithm in Algorithm 1 below.

Clearly, our EM algorithm is much simpler to implement as com-

pared to directly solving the original problem in (5), because only

the geographical coordinates have to be solved numerically.

Algorithm 1 EM Algorithm for Joint Parameter Estimation

Step 1—Initialization:

Define the convergence tolerance ∆; Set η = 0; Choose an initial

guess θ(η=0) = [α
(0)
1 , α

(0)
2 ,β

T,(0)
1 ,β

T,(0)
2 , σ

2,(0)
1 , σ

2,(0)
2 ,xT,(0)]T .

Step 2—Perform Expectation and Maximization:

In the (η + 1)th iteration (η ∈ Z, η ≥ 0), do:

- Compute P̃
(η)
l,i according to (7).

- Find α
(η+1)
l , β

(η+1)
l , σ

2,(η+1)
l , l = 1, 2 according to (8),

(11), and (12), respectively.

- Find x(η+1) through minimizing g(x) (cf.(13)) in terms of x

via the BFGS quasi-Newton method initialized with x(η).

Step 3—Convergence Check:

If

∣
∣
∣L(θ(η+1); z)− L(θ(η); z)

∣
∣
∣ ≤ ∆, then stop; otherwise reset

η ← η + 1 and return to Step 2.
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Fig. 1. True log-distance path loss model (in dB scale) versus its

estimate in one particular Monte Carlo trial. Note that we introduced

a negative sign in the original model (cf. (2)) for better illustration.

Herein, the estimated parameters are ÂLOS = 101.70, B̂LOS = 2.49,

ÂNLOS = 131.33, B̂NLOS = 3.11, all in dB.

5. SIMULATIONS

We consider geolocation in a cellular network, which comprises

M = 15 base stations (anchors) and one mobile station (agent).

The base stations are located in a two dimensional (2-D) plane with

fixed coordinates in km scale as follows: (x1 = −1.1, y1 = 0.8),
(x2 = −1.1, y2 = 0), (x3 = −0.75, y3 = 1), (x4 = −0.6, y4 =
0.1), (x5 = −0.6, y5 = −0.9), (x6 = −0.5, y6 = 0.2),
(x7 = −0.35, y7 = 0.3), (x8 = 0, y8 = 0.4), (x9 = 0, y9 = 0),
(x10 = 0.2, y10 = 0.1), (x11 = 0.4, y11 = 0.8), (x12 =
0.4, y12 = 0), (x13 = 0.75, y13 = −1), (x14 = 0.9, y14 = 0.6),
(x15 = 1, y15 = −0.6). The mobile station is located at (x =
0.3, y = 0.5) km. The transmit power is PT = 40 dBm. The mode-

dependent propagation model parameters are α1 = 0.5, α2 = 0.5,

ALOS = 101.7, BLOS = 2.6, ANLOS = 132.8, BNLOS = 3.8, σ1 = 2,

and σ2 = 8, all in dB except for the first two terms.

In the first simulation, we study the estimation performance of

the EM algorithm in a Monte Carlo experiment with 1500 indepen-

dent trials. Here, we assume K = 5 and start the EM algorithm with

an initial guess θ(0) = [0.3, 0.7, 95, 2, 150, 4.5, 8, 80, 350, 400]T .

In each Monte Carlo trial, we record the EM estimate of θ and ul-

timately, we calculate the mean of the parameter estimates over all

trails. Due to space limitation, we only show the performance of the

path loss model. Figure 1 lends some insight into how well the true

path loss model (cf. (2)) can be estimated by the EM algorithm. It is

obvious from the figure that the conventional single-mode propaga-

tion model is insufficient to be adopted in the given scenario. More-

over, the mean value of the path loss model parameters turn out to

be
¯̂
ALOS = 101.70,

¯̂
BLOS = 2.59,

¯̂
ANLOS = 132.80,

¯̂
BNLOS = 3.82

(all in dB), which almost coincide with the true values.

In the second simulation, we study the geolocation accuracy by

numerically evaluating the bias and root mean square error (RMSE)

of the EM position estimator x̂. The simulation parameters remain

unaltered except for K. For the sake of comparison, we also demon-

strate the performance achieved by matching a conventional single-

mode propagation model (assuming r
(m)
k is always equal to 1 or 2

10 20 30 40 50 60
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4
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Fig. 2. Upper: Bias of the EM position estimator x̂ = [x̂, ŷ]T as

a function of K. Bottom: RMSE of x̂ versus the best achievable

geolocation accuracy, CRLBpos, for different K.

in our signal model) with our mixed propagation environment. The

model parameters A, B, and σ2 are calculated by following a simi-

lar procedure as the one developed in [16], which can be treated as

a special case of Algorithm 1. Besides, we compute the best achiev-

able position RMSE, denoted by CRLBpos, as follows:

CRLBpos ,

√
([

F
−1(θ)

]

9,9
+
[
F

−1(θ)
]

10,10

)

where Fisher information matrix F(θ) is numerically calculated us-

ing Monte Carlo integration techniques [17]. The results of the bias,

RMSE, and CRLBpos are shown in Fig. 2, where we observe the fol-

lowing. First, assuming a mode-dependent propagation model yields

considerably improved geolocation accuracy. Second, the EM posi-

tion estimator approaches the MLE as K increases. Furthermore,

our algorithm only consumes circa 0.15 seconds on average (on a

PC with Intel R©CoreTMi5-760 processor and 8GB RAM) to generate

a position estimate in this simulation, which makes it a good candi-

date for many real-time location-aware services.

6. RELATION TO PRIOR WORK AND CONCLUSIONS

In the literature, there exist many geolocation algorithms built on

RSS measurements. Here, we narrow down our scope to the class

of probabilistic algorithms where the RSS is assumed to be stochas-

tic and influenced by factors such as path loss, multipath fading, and

shadowing [2, Chapter 12]. The vast majority of studies consider ge-

olocation based on a single-mode propagation model. For instance,

[11, 12] estimate the model parameters a priori to the position esti-

mation; while [16, 18, 19] assume some or all of the model param-

eters are unknown and propose to estimate them together with the

position. In mixed LOS/NLOS environments, field-trial results moti-

vate us to consider a mode-dependent propagation model. In order to

avoid extra operational cost, we assume the mode-dependent model

parameters are all unknown and conduct joint estimation based on

the EM criterion. The designed position estimator well approximates

the MLE and largely outperforms the one proposed in [16], where

only a single-mode propagation model is considered. Moreover, it

attains the best geolocation accuracy for large data records.
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