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ABSTRACT

This paper presents an approach for 6D pose estimation where
MEMS inertial measurements are complemented with magnetome-
ter measurements assuming that a model (map) of the magnetic field
is known. The resulting estimation problem is solved using a Rao-
Blackwellized particle filter. In our experimental study the magnetic
field is generated by a magnetic coil giving rise to a magnetic field
that we can model using analytical expressions. The experimental
results show that accurate position estimates can be obtained in the
vicinity of the coil, where the magnetic field is strong.

Index Terms— Magnetic field, inertial navigation, state estima-
tion, Rao-Blackwellized particle filter, magnetometer.

1. INTRODUCTION

With the reducing cost of accelerometers and gyroscopes (inertial
sensors) and magnetometers, these sensor are becoming increasingly
available in day-to-day life. It is for instance common that these
sensors are present in modern smartphones. Positioning based on
inertial sensors alone suffers greatly from drift and does not give re-
liable estimates for any but the highest quality sensors. Because of
this, sensors such as GPS and ultra-wideband are often used as an
aiding source [1]. While GPS solutions only work for outdoor ap-
plications, indoor solutions are often highly dependent on additional
infrastructure.

Magnetometers are a reliable source of information due to their
high sampling rates and reliable sensor readings. They measure the
superposition of the local earth magnetic field and the magnetic field
induced by magnetic structures in the vicinity. Magnetometers are
widely used as a source of heading information, relying on the as-
sumption that no magnetic disturbances are present. Especially in
indoor applications this assumption is often violated due to the pres-
ence of steel in the construction of buildings and objects like radia-
tors, tables and chairs.

This paper presents a method to obtain accurate position and ori-
entation estimates based on inertial and magnetometer data assum-
ing a map of the magnetic field is known. This enables positioning
with widely available sensors, without requirements on additional
infrastructure.

In recent years, the idea of using the presence of magnetic dis-
turbances as a source of position information has started appearing
in the literature. Most interest is from the robot localization perspec-
tive where odometry information is available [2, 3, 4, 5]. Generally,
in these applications localization is only considered in 2D, and the
sensor is assumed to be rotating around only one axis. To the best of
the authors’ knowledge, little work has been done on combining in-
ertial and magnetometer measurements, for example [6, 7]. This is a
more challenging problem compared to using odometry information,
since low grade inertial measurement units (IMUs) generally have
poor dead-reckoning performance. The approach presented in [6]
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Fig. 1. Magnetometer measurements represented in the earth coor-
dinate frame. The measurements have been preprocessed by sub-
tracting the earth magnetic field. The magnitude is indicated by the
colors and the direction by the arrows.

is not based on magnetic field maps, but uses knowledge about the
physical properties of the magnetic field and its gradient to aid local-
ization using an extended Kalman filter approach. Other approaches
focus on using sensors in smartphones for localization [8, 9, 10] and
consider magnetometer data only or very limited information from
the inertial sensors. The direction of the magnetic field can, how-
ever, only be derived from the magnetic field measurements when
the sensor orientation is known. Not estimating the full orientation
therefore poses constraints on the allowed sensor rotations. In our
approach no constraints on the sensor rotations are required since
the full 6D pose is estimated.

To isolate the problem of localization inside a known magnetic
field map from the problem of obtaining the map, this work assumes
that the magnetic field map is known and is generated by a magnetic
coil. The reason for using a magnetic coil is that it is one of the few
cases for which the magnetic field can be computed analytically. In
other words, we have a perfect model describing the magnetic field
produced by the magnetic coil. The magnetic field measurements
can be described as a nonlinear function of the sensor position in
this map and its orientation with respect to the map.

2. MODELS

Before introducing the dynamic and measurement equations, the rel-
evant coordinate frames and the state vector will be introduced. All
measurements are assumed to be obtained in the body coordinate
frame denoted by b, which is the coordinate frame of the measure-
ment unit with the origin in the center of the accelerometer triad. The
position is tracked in the earth coordinate frame denoted by e, which
is fixed in the world. The magnetic field map is represented in the
map coordinate frame denoted by m whose orientation is assumed
to be aligned with that of the coil. The origin of the earth coordinate
frame e is assumed to coincide with that of the map coordinate frame
and with the center of the magnetic coil.
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The relevant state vector consists of the sensor’s position pe

and velocity ve, its orientation with respect to the earth frame ex-
pressed as a unit quaternion qeb =

(
q0 q1 q2 q3

)T and the
gyroscope bias bb

ω . In our model we have used the inertial measure-
ments as inputs to the dynamic equations in order to not increase
the state dimension. For reasons that will become clear after the
model has been provided, we split the state vector into two parts
xt =

(
(xn
t)

T (xl
t)

T
)T, where

xn
t =

(
(pe
t)

T (qeb
t )T

)T
, xl

t =
(
(ve
t)

T (bb
ω)T
)T
. (1)

2.1. Dynamical model

The dynamical equations can be derived by using the inertial mea-
surements as inputs. A commonly used, slowly time-varying ran-
dom walk model is used for the gyroscope bias [1]. This leads to the
following state update equations for the linear and nonlinear states
[1, 11]

xn
t+1 =

(
I3 0
0 I4

)
︸ ︷︷ ︸

Ann

xn
t +
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TI3 0

0 −T
2
S̃(qeb

t )

)
︸ ︷︷ ︸
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t (xn

t)
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t+
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T2

2
R(qeb

t ) T2

2
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0 0 T
2
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t )

)
︸ ︷︷ ︸

Bn
t(x

n
t)

ut+

(
T2

2
R(qeb

t ) 0

0 T
2
S̃(qeb

t )

)
︸ ︷︷ ︸

Gn
t(x

n
t)

(
wb
a,t

wb
ω,t

)
︸ ︷︷ ︸

wn
t

(2a)

xl
t+1 =

(
I3 0
0 I3

)
︸ ︷︷ ︸

All

xl
t +

(
TR(qeb

t ) TI3 0
0 0 0

)
︸ ︷︷ ︸

Bl
t(x

n
t)

ut+

(
TR(qeb

t ) 0
0 I3

)
︸ ︷︷ ︸

Gl
t(x

n
t)

(
wb
a,t

wb
bω,t

)
︸ ︷︷ ︸

wl
t

. (2b)

Here, Ik denotes the identity matrix of size k×k,R(qeb
t ) ∈ SO(3)

is the rotation matrix obtained from the unit quaternion qeb
t and1

S̃(qeb
t ) =


−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0

 . (3)

The input vector ut is given by

ut =
(
(yb

a,t)
T (ge)T (yb

ω,t)
T
)T
, (4)

where ge denotes the gravity vector and the accelerometer and the
gyroscope measurements are denoted by yb

a and yb
ω , respectively.

The latter are modeled as

yb
a,t = Rbe

t (ae
t − ge) + wb

a,t, (5a)

yb
ω,t = ωb

t + bb
ω + wb

ω,t, (5b)

1Note that the propagation of the quaternion state in this way is an approx-
imation, valid only for high sampling rates. The algorithm does not prevent
use of the exact update equation and the approximation is only used to reduce
computational complexity.

based on the fact that the accelerometer measures both the gravity
vector and the body’s free acceleration. The noise is modeled as

wb
a ∼ N (0, Qa), Qa = σ2

a I3, (6a)

wb
ω ∼ N (0, Qω), Qω = σ2

ωI3, (6b)

wb
bω ∼ N (0, Qbω ), Qbω = σ2

bωI3. (6c)

The state noise is assumed to be distributed according to

wt =

(
wn
t

wl
t

)
∼ N (0, Q), (7a)

Q =

(
Qnn Qnl

(Qnl)T Qll

)
=


Qa 0 Qa 0
0 Qω 0 0

QT
a 0 Qa 0

0 0 0 Qbω

 . (7b)

Note that the linear and nonlinear state noise is highly correlated
since the accelerometer noise acts on both the position and velocity
states. This needs to be taken into account in the implementation.

2.2. Magnetometer measurement model

The magnetometer measurements are modeled as

yb
m,t = h(xn

t) + eb
m,t, (8)

where eb
m,t ∼ N (0, R) and h(xn

t) is a function of the position pe
t and

orientation qeb
t states. In practice this will be a superposition of the

local earth magnetic field and all magnetic disturbances present.
As discussed in the introduction, to isolate the problem of po-

sitioning inside a map from the problem of making the map, we
chose an experimental setup where the magnetic field is generated
by a magnetic coil. In this case a magnetic field map is analytically
known assuming the coil’s position and orientation are known. The
function h(xn

t) is given by

h(xn
t) = R(qbe)RemB(Rmepe

t). (9)

The function B(Rmepe
t) gives the magnetic field in the map coordi-

nate frame at a position pm. The expression for the magnetic field
from the coil is given by [12]

B(pm) =
µ0NwI

2π
√(√

p2x + p2y + a
)2

+ p2z

·


pxpz
p2x+p2y

[
−K(k) +

a2+p2x+p2y+p
2
z(√

p2x+p2y−a
)2

+p2z

E(k)
]

pypz
p2x+p2y

[
−K(k) +

a2+p2x+p2y+p
2
z(√

p2x+p2y−a
)2

+p2z

E(k)
]

[
K(k) +

a2−p2x−p
2
y−p

2
z(√

p2x+p2y−a
)2

+p2z

E(k)
]

 (10)

where pm =
(
px py pz

)
, µ0 is the magnetic permeability in

vacuum, a is the coil radius, Nw is the number of windings, I is
the current through the coil and E(k) and K(k) are given by the
following elliptic integrals

E(k) =

∫ π/2

0

√
1− k2 sin2 θdθ, (11a)

K(k) =

∫ π/2

0

1√
1− k2 sin2 θ

dθ, (11b)
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where

k =

√
4a
√
p2x + p2y

(
√
p2x + p2y + a)2 + p2z

. (12)

These equations implicitly assume that the origin of the earth
coordinate frame coincides with that of the map coordinate frame.
Note that our measurement model assumes that no background field
is present.

2.3. Some additional words about the magnetic field model

The magnetic field of a coil is generally described as a function of
the perpendicular distance pz towards the coil and the radial distance
r =

√
p2x + p2y towards the center of the coil [12, 13]. However, in

tracking we are interested in absolute position rather than just the
distance to a source. Parametrizing the magnetic field in terms of a
position px, py , pz introduces unobservability. Assuming the coil is
placed horizontally, this results in two horizontal circles, one above
and one below the coil, where the horizontal position is coupled to
the heading as an unobservable manifold. We assume that the sensor
can only be positioned above the coil and therefore have an entire cir-
cle of solutions at each time step. Note that in the more general case
where multiple magnetic sources are present and possibly rotated
with respect to each other, the unobservable manifold will be differ-
ently shaped or in some cases non-existent. To make our dynamic
model applicable to any magnetic field map, we have not adapted the
parametrization of our state vector to this specific structure.

3. COMPUTING THE ESTIMATE

As can be seen from the dynamical and measurement model pre-
sented in Section 2, the state dynamics is assumed to be linear
while the measurement model is a nonlinear function of the sen-
sor’s position and orientation. A nonlinear filtering technique is
therefore needed to compute a state estimate. A linear substructure
can, however, be recognized, which can be exploited using a Rao-
Blackwellized particle filter (RBPF) in which the state is split into
a state xl that enters linearly in both the dynamic and measurement
model and a state xn that enters non-linearly, where xl and xn are
defined by (1). An RBPF solves the nonlinear filtering problem by
using a Kalman filter (KF) for the linear states and a particle filter
(PF) for the nonlinear states.

The RBPF in this paper has been derived from [11] and [14] and
is summarized in Algorithm 1. It applies the model structure (2), (8),
the noise assumptions (6) and their correlations given in (7). In (13),
x̄it and P̄ it are computed, which are a stacked version of the nonlin-
ear and linear states and covariances. Based on these, the nonlinear
and linear time update are given by (14), (15) respectively. Note that
in (15) the pseudo-inverse, denoted by †, of P̄ nn,i

t needs to be taken
because this matrix is rank deficient due to the presence of quater-
nion states.

Since the measurement model (9) only depends on the nonlin-
ear states, measurement information about the linear states is in our
problem only available through the nonlinear states. Algorithm 1
does therefore not contain an explicit KF measurement update. How-
ever, measurement information implicitly present in the nonlinear
states is taken into account in the linear states in (15).

3.1. RBPF-MAP

To compare particle filter estimates to reference data, a point esti-
mate needs to be computed at each time step. The most commonly
used approach for this is to take the conditional mean estimate. Due
to the unobservability in our model (see Section 2.3), however, all
particles on a horizontal circle are equally likely, which can lead to
an uninformative point estimate in center of the circle.

Algorithm 1 Rao-Blackwellized particle filter

1. Initialization: For i = 1, . . . , N generate xn,i
0 ∼ pxn

0
, set

{xl,i
0 , P

i
0} = {xl

0, P0}, γi−1 = 1
N

, and set t = 0.

2. Measurement update: For i = 1, . . . , N evaluate the particle
importance weights γit = 1

ct
γit−1p(yt|xn,i

0:t, y0:t−1) based on
(8) where ct =

∑N
i=1 γ

i
t−1p(yt|xn,i

0:t, y0:t−1).

3. If t > 0, compute the estimate x̂t based on (17).

4. Resampling: If N̂eff = 1∑N
i=1(γ

i
t)

2 < 2
3
N , resample N par-

ticles with replacement from the set {xn,i
t , x

l,i
t }Ni=1 where the

probability to take sample i is γit , and reset the weights to
γit = 1

N
.

5. Time update: Determine the Gaussian mixture

x̄it+1 = Aitx
i
t +Bitut, (13a)

P̄ it+1 = Al,i
t P

i
t (Al,i

t )T +GitQ(Git)
T, (13b)

where

x̄it =

(
x̄n,i
t

x̄l,i
t

)
, P̄ it =

(
P̄ nn,i
t P̄ nl,i

t

(P̄ nl,i
t )T P̄ ll,i

t

)
,

Al,i
t =

(
Anl,i
t (xn,i

t )

All

)
, Ait =

(
Ann Anl,i

t (xn,i
t )

0 All

)
,

Bit =

(
Bn,i
t (xn,i

t )

Bl,i
t (xn,i

t )

)
, Git =

(
Gn,i
t (xn,i

t ) 0

0 Gl,i
t (xn,i

t )

)
.

The nonlinear states can now sampled according to

xn,i
t+1 ∼ N (x̄n,i

t+1, P̄
nn,i
t+1), (14)

and the linear states can be updated according to

xl,i
t+1 = x̄l,i

t+1 + (P̄ nl,i
t+1)T(P̄ nn,i

t+1)†(xn,i
t+1 − x̄

n,i
t+1), (15a)

P it+1 = P̄ ll,i
t+1 − (P̄ nl,i

t+1)T(P̄ nn,i
t+1)†P̄ nl,i

t+1. (15b)

6. Set t := t+ 1 and iterate from step 2.

In [15, 16] a maximum a posteriori estimate for the particle filter
(PF-MAP) has been derived, which is argued to give a better point
estimate in multi-modal applications. The PF-MAP estimate is an
approximation of the MAP estimate given by

x̂MAP
t|t = arg max

xit

p(yt|xit)
∑
j

p(xit|xj1:t−1)wjt−1. (16)

Following a similar reasoning, the RBPF-MAP estimate, can be
shown to be

x̂MAP
t|t = arg max

x
n,i
t ,x

l,i
t

p(yt|xn,i
t , x

l,i
t )
∑
j

wjt−1N (xit; x̄
j
t|t−1, P̄

j
t|t−1),

(17)

where x̄jt|t−1 and P̄ jt|t−1 can be obtained from (13). Note that since
our problem does not have a KF measurement update, instead of
the commonly used double subscript denoting the time for the linear
states, Algorithm 1 only uses a single subscript.

When implementing this in step 2 of the Algorithm 1, it needs
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to be taking into account that the covariance matrix P̄ jt is rank defi-
cient due to the presence of quaternion states. Because computation
of (17) is computationally heavy, it could also be considered to use
the most probable particle of the posterior. This would lead to simi-
lar results in Section 4.

4. EXPERIMENTAL RESULTS

4.1. Experimental setup

An experiment has been performed in which the magnetic field is
generated by a magnetic coil where the number of windings Nw is
equal to 50, the current I through the coil is 1 A and the radius a
of the coil is 6 cm. A MEMS IMU (Xsens MTi) providing syn-
chronized inertial and magnetometer measurements at a sampling
frequency of 100 Hz is used. A picture of the experimental setup
can be found in Figure 2. Ground truth data is collected from an
optical reference system (Vicon system) and is used for validation of
the estimates as well as for determining the position and orientation
Rem of the coil.

Fig. 2. The experimental setup consisting of an IMU (orange box),
a coil and a power supply. Optical markers are present, used for
obtaining ground truth data, via an optical reference system.

Before the magnetometer measurements can be used in Algo-
rithm 1, they need to be preprocessed for two reasons. First, the
model (9) assumes that the magnetometer only measures the mag-
netic field due to a coil. A constant term representing the local
earth magnetic field therefore needs to be determined and subtracted
from all measurements. Second, the IMU used outputs magnetome-
ter measurements in arbitrary units, while the model (9) determines
the magnetic field in Tesla. A constant multiplication on all axes
is therefore needed. Both constants are obtained by determining
a best estimate from a part of the data where the magnetic distur-
bance is (approximately) zero. The preprocessed data is illustrated
in Figure 1. The circles represent the preprocessed magnetometer
measurements, downsampled to 4 Hz. The color of the circles rep-
resents the magnitude of the magnetic field. The magnetic field falls
off cubically with distance which explains why the magnitude of the
magnetic field is reduced quickly with distance from the coil. Each
preprocessed measurement also gives rise to a red arrow indicating
the direction of the magnetic field. The length of the arrows illus-
trates the magnitude.

4.2. Results

Using the collected inertial and magnetometer data, Algorithm 1 can
be applied to obtain state estimates. Due to the fact that the mag-
nitude of the magnetic field falls off cubically with distance, all re-
sults in this section are based on data no further away from the coil’s
origin than 40 cm. These have been compared to the ground truth
data from the reference system. This section focuses on analysis of
the position estimates. Due to the unobservability discussed in Sec-
tion 2.3 we do not expect exact matches between the RBPF estimates
and the ground truth data. A good comparison of the quality of the
estimates, however, are the radial position and height estimates. The

error plots can be found in Figure 3. The RBPF is initialized around
the true estimate using the reference data, but any other (reasonable)
initialization will give comparable results.

As can be seen in Figure 3, very good position estimates are ob-
tained. However, at approximately 42 s, there is a big peak in both
the radial position and the height errors. This can be explained by
the fact that at this time instant, the sensor is the furthest away from
the coil, almost 40 cm. The approach presented in this work is thus
able to obtain high accurate position estimates for longer times, only
when the sensor remains close to the coil. This is a major limitation
in using the magnetic field as a source of position information in the
way presented in this paper. The further away from the magnetic
disturbance the less informative the measurements become. Even
though at 40 cm from the coil the signal to noise ratio is still good,
tracking problems occur due to model errors. It is therefore impor-
tant to have a good model of the magnetic field [17].
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Fig. 3. Error plots comparing the RBPF position estimates with the
ground truth data from the optical reference system.

5. CONCLUSIONS AND FUTURE WORK

This paper has shown that close to a magnetic distortion generated
by a magnetic coil, good position and orientation estimates can be
obtained from inertial and magnetometer data only. Ideas for fu-
ture work include extending the magnetometer model to a more re-
alistic measurement model. First trials show that we can probably
deal with including the local earth magnetic field. We also aim at
combining this work with [17] into an approach where simultaneous
localization and mapping (SLAM) is possible. Another future line
of research aims at studying the unobservability manifolds from the
magnetic field in different cases.
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