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ABSTRACT

This paper presents a “method of moments” estimation technique for
the study of multiple scattering on the hypersphere. The proposed
model is similar to a compound Poisson process evolving on a spe-
cial manifold: the unit hypersphere. The presented work makes use
of an approximation result for multiply convolved von Mises-Fisher
distributions on hyperspheres. Comparison with other approxima-
tions show the accuracy of the proposed model to provide estimators
for the mean free path and concentration parameters when studying
a multiple scattering process. Such a process is classically used to
model the propagation of waves or particules in random media.

Index Terms— von Mises-Fisher distribution, random walk on
hypersphere, multiple scattering, Method of moments estimation.

1. INTRODUCTION

Mixtures of von Mises-Fisher (vMF) distributions are models used
in applications ranging from IRM data analysis [1] to radiation ther-
apy beam direction clustering [2] and speaker clustering [3]. The
finite mixture case was originally studied in [4] for data clustering
on hyperspheres. All the above mentioned contributions made used
of EM algorithms for the estimation of mixtures weights, vMF dis-
tribution parameters or number of mixture component. In this paper,
we consider particular infinite mixtures of vMFs where the compo-
nents of the mixtures are multiply convolved vMFs and where the
number of components is random, and parameterized by a Poisson
parameter λ.

We consider vMF distributions of unit vector in Rp, i.e. elements
of Sp−1. The proposed approach is thus valid for any dimension p.
However, our work is motivated by an application in R3. Namely,
we consider the problem of multiple scattering for particules in a
random media and model the output distribution of the direction of
propagation of the particule as a mixture of vMF distribution. This
model can be compared with the one proposed in [5, 6] where mul-
tiple scattering is described as a Compound Poisson Process (CPP)
on the rotation group SO(3). In [5], it is shown that this model al-
lows to describe forward multiple scattering, and its accuracy is high
when the number of diffusion events is low. Thus, the CPP model
describes the behavior of particules in a scattering medium before
the fully developed diffusive regime (known to be thoroughly de-
scribed by the Brownian motion on SO(3) and originally studied by
Perrin [7]). Here, we will focus on the multiple scattering regime in
its early stage, i.e. when only a few number of scattering events have
occurred.

This paper studies a model that mimics the CPP approach, but
where the distribution of randomly scattered directions of propaga-

tion afterN scattering events is obtained thanks to a multiple convo-
lution property of the vMF distribution. Thus, the proposed model
can not be expressed using the transitive action of SO(3) on S2, but
thanks to the analysis of the distribution of multiply convolved vMF
distribution, conditionally to N , the parameters of the complete dis-
tribution of the multiply scattered particule in a random media can
be inferred. The contribution of this paper is to derive an asymptotic
(small number of high-concentration scattering events) parametric
approximation of the multiply convolved vMF distribution. It allows
us to give the Fourier expansion of this approximate distribution.
This makes possible the use of a method of moment (MoM) based
estimation technique similar to decompounding [6]. We present re-
sults of such estimation procedure to identify the parameter of the
vMF distribution. The performance of these estimators based on the
proposed approximation formula are compared with respect to clas-
sical models or approximations used in the literature.

The main contribution of the paper with respect to the exist-
ing work is to motivate and provide a vMF approximation for the
multiple scattering process on Sp−1 in the high concentration, small
number of scattering events limit. This approximation, valid for any
dimension p, offers robust MoM estimators for the inference of vMF
mixtures or decompouding.

The remainder of this text is outlined as follows. Properties and
asymptotic expression of the random walk distribution on the hyper-
sphere are given in Section 2. Section 3 is devoted to the inference of
the compound Poisson process. MoM estimators based on different
approximations of the compound Poisson distribution are derived.
The accuracy of the asymptotic vMF approximation and the perfor-
mance of the resulting MoM estimators are analyzed in Section 4 by
means of numerical simulation.

2. SOME PROPERTIES OF THE RANDOM WALK ON THE
HYPERSPHERE

2.1. General properties

The p−1 hypersphere , denoted as Sp−1, is the set of p dimensional
vectors with unit length Sp−1 = {x ∈ Rp; ||x|| = 1}. The discrete
time random walk on the hypersphere Sp−1 consists now of a chain
of random vectors x0, x1, . . . xn in Sp−1 such that each random
step xk−1 → xk, for all k ≥ 1, are independent. As a conse-
quence the random walk obeys the Markov property since given all
the past directions x0, . . . ,xk−1, the current direction xk depends
only on the previous one xk−1. It is of note that these steps are
not necessarily identically distributed. However, an important case
appears when they are isotropic, so that all the step directions are
equiprobable. Thus, the distribution of the kth-step direction xk is
rotationally symmetric about the previous one xk−1, for all k ≥ 1.
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When the distribution of the steps are continuous, it yields the fol-
lowing form of the conditional probability density function (pdf) of
xk given xk−1 [8, p. 179]

f(xk|xk−1) ∼ gk,k−1(x
T
k xk−1), ∀k ≥ 1, (1)

where xTk xk−1 is the scalar product of the column vectors xk and
xk−1. Eq. (1) shows that this conditional distribution does not de-
pend on the part of the vector xk normal to xk−1.

Moreover, due to the rotational symmetry, the mean direction of
xk given xk−1 expresses as

E[xk|xk−1] = ρk,k−1xk−1, ∀k ≥ 1 (2)

where the scalar ρk,k−1 ∈ (0, 1] is the so-called mean resultant
length. This quantity is directly linked with the dispersion of the
directional distribution gk. In fact, a value of ρk,k−1 close to 1 indi-
cates a high concentration about the mean direction.

In the remainder of the paper, we assume that the initial direction
x0 is fixed to a deterministic direction µ. Applying the probability
chain rule, the pdf of the nth direction can finally be expressed as a
multiple integral

f(xn;µ) =

Z
Sp−1
. . .

Z
Sp−1
gn,n−1

“
xTnxn−1

”
× . . .

× g1,0
“
xT1 µ

”
dxn−1 . . .dx1.

(3)

Eq. (3) underlines that the pdf of xn can be viewed as the ntimes
multiple convolution on the hypersphere Sp−1

f(xn;µ) = (gn,n−1 ⊗ · · · ⊗ g1,0) (xn;µ), (4)

where the natural addition operator on Euclidean spaces is replaced
by the dot product between unit vectors. In general, it is not pos-
sible to obtain a tractable analytical expression of the multiply con-
volved pdf (3,4). However, some important results can be directly
deduced from the Markov property of the random walk. Applying
the chain rule on the conditional expectations (2) yields directly the
mean value of the random walk.

Proposition 1. For all n ≥ 1, the mean direction of the n-step
direction xn and its mean resultant length reads

E[xn] =

 
nY
k=1

ρk,k−1

!
µ. (5)

Proposition 1 shows that the mean direction of the n-step is the
initial direction µ, while its resultant mean length reduces to the
product of all the resultant mean lengths associated with each step.
It shows that the directional dispersion increases with the number n
of steps, since ρk,k−1 ≤ 1 for all k ≥ 1.

Moreover, some well know results in the Euclidean spaces of
symmetry and unimodality can be extended to the convolution on
the hypersphere.

Proposition 2. Let assume that the conditional directional distribu-
tions f(xk|xk−1) are unimodal and rotationally symmetric about
their modes (which equals their mean direction) for k ≥ 1. Then the
distribution of the nth-step direction xn, whose pdf is given in (3), is
also unimodal and rotationally symmetric about its mode. Further-
more, its mode corresponds to the initial direction µ of the random
walk.

Proof. For brevity reason, the proof of the unimodality is omitted.
However the sketch of the proof is inspired by the proof given in [9]
of the equivalent property on an real line. The proof of the rotational
symmetry is given below and is conducted by induction. By hypoth-
esis (1), x1 is rotationally symmetric about x0 ≡ µ and the base
case holds. We can assume now the inductive hypothesis that xn−1

is rotationally symmetric about µ. It leads to the following form of
the pdf

f (xn−1) = hn−1

“
xTn−1µ

”
.

According to the Bayes’ theorem, the marginal density of xn can be
derived from its conditional density given xn−1 expressed in (1) and
from the marginal density of xn−1

f(xn) =

Z
Sp−1
gn,n−1

“
xTnxn−1

”
hn−1(x

T
n−1µ)dxn−1.

In order to prove the rotational symmetry, it is sufficient now to
show that for any rotation R defined in the hyperplane normal to
the direction µ, the pdf of xn and yn = Rxn are equals. Since
R ∈ SO(p) is a rotation matrix, one gets det(R) = 1, R−1 = RT ,
R
`
Sp−1

´
= Sp−1, and moreover Rµ = RTµ = µ as the rotation

plane is normal to µ. Thus the pdf of yn is deduced by the change
of variable formula as

f(yn) =

Z
Sp−1
gn,n−1

“
yTnR

Txn−1

”
hn−1(x

T
n−1µ)dxn−1.

Performing the change of variable z = RTxn−1 for the vector of
integration yields

f(yn) =

Z
Sp−1
gn,n−1

“
yTnz

”
hn−1(z

TRTµ)dz,

=

Z
Sp−1
gn,n−1

“
yTnz

”
hn−1(z

Tµ)dz = f(xn),

and the inductive steps holds. It concludes the proof.

2.2. VMF approximation for isotropic random walk on Sp−1

The main problem to characterize more deeply and to infer the dis-
tribution of the nth-step direction xn is that there is no closed form
expression of the density of the multiply convolved distribution (4).
However when all the random walk steps (1) are governed by uni-
modal rotationally symmetric distributions, Proposition 2 suggests
that the distribution of xn can be well fitted by a standard rotation-
ally symmetric distributions.

The von Mises-Fisher distribution [8, p. 167] is probably the
most important distribution in the statistics of hyperspherical data
and plays an analogue role on Sp−1 than the normal distribution on
the real line. This distribution, denoted as Mp(µ, κ), is defined by
the following pdf for all x ∈ Sp−1

fp(x;µ, κ) =
κp/2−1

(2π)p/2Ip/2−1(κ)
eκx

Tµ, (6)

where Iν(·) is the modified Bessel function [10, p. 374], µ ∈ Sp−1

corresponds to the mean direction and κ ≥ 0 is the concentration
parameter: the larger the value of κ, the more concentrated is the
distribution about the mean direction µ. Conversely, when κ = 0
the distribution reduces to the uniform distribution on Sp−1. Also,
the mean resultant length expresses

ρ ≡ Ap(κ) =
Ip/2(κ)

Ip/2−1(κ)
. (7)
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Finally, based on the pdf expression (6), it is straightforward to see
that this distribution is rotationally symmetric and unimodal with
mode µ when κ > 0. Since the properties of the vMF distributions
are in agreement with Proposition 2, this family seems to be a good
candidate to fit the distribution of the nth step directions xn. By
identification of the mean resultant length expressions given in Eq.
(5) and (7), it leads to model the distribution of xn by a Mp(µ, κ̃n)
distribution such that

Ap(κ̃n) =

nY
k=1

ρk,k−1. (8)

Eq. (8) leads to the vMF approximation of the multiply convolved
vMF distribution given in Theorem 1 below.

Theorem 1. Let assume that all the steps are identically distributed
according to a vMF distribution with high concentration parameter
κ: When the small number of high-concentration scattering events
Then, based on the Eq. (8) criterion, the asymptotic distribution of
xn in the large κ and small n asymptotic case is approximated by
the Mp(µ, κ̃n) distribution where

κ̃n =
κ− 1/2

n
+ 1/2. (9)

is the equivalent concentration parameter.

Proof. For large κ, the asymptotic expansion of the modified Bessel
function [10, p. 377] gives the following expansion of eq. (7)

ρ ≡ Ap(κ) = 1 +
p− 1

2κ
+

(p− 1)(p− 3)

8κ2
+O

„
1

κ3

«
, (10)

By using the Lagrange inversion theorem, one gets

κ =
p− 1

2(1− ρ) −
p− 3

4
+O(1− ρ), (11)

when ρ is close to 1. Thus, since Ap(κ̃n) = ρn according to (8), the
expansion of κ̃n is derived by substituting ρ by ρn in (11)

κ̃n =
p− 1

2(1− ρn)
− p− 3

4
+O(1− ρn), (12)

when ρ is close to 1. Moreover, from (10), one also gets

ρn = 1− n(p− 1)

2κ
+
n(p− 1)

2κ

h
(p−3)+(n−1)(p−1)

4κ

i
+O

„
1

κ3

«
,

and reversely

κ =
n(p− 1)

2(1− ρn)
−
h

(p−3)+(n−1)(p−1)
4

i
+O (1− ρn) . (13)

Matching now expression (12) in (13) leads to the formula (9) when
ρ is close to 1, i.e. for large κ. Note that this formula does not
depend anymore on the hyperspherical dimension p− 1.

3. MULTIPLE SCATTERING ESTIMATION METHODS

3.1. Mixture observation model

Consider an initial vector x0 ≡ µ ∈ Sp−1. After a time t, assume
the resulting vector xt ∈ Sp−1 is a mixture made of contributions
of rotated versions of µ an arbitrary number of times n, each with
individual weight equal to e−λt(λt)n/n!. This weight is obtained

when the time interval between two rotation of the vector is chosen
to have an exponential distribution with parameter λ. The equivalent
Poisson parameter λt = λt consists in the mean number of rotation
events in the elapsed time t. In Physics, it is related to the mean free
path ` like ` = t/c where c is the celerity in the medium. Thus, ` is
the mean distance between two consecutive rotation events (see [5]).

Using the expression of the multi-convolution of f conditioned
by the number of rotation events, and recalling the result about the
mean direction after n convolutions, one gets:

fp(xt;µ, κ) =
X
n≥0

e−λt(λt)n

n!
f⊗np (µ, κ), (14)

where f⊗np (µ, κ) is the multiply convolved (n times) vMF distribu-
tion. The pdf fp(xt;µ, κ) thus consists in a mixture of vMF distri-
butions ntime multiply convolved, i.e. f⊗np (µ, κ) = fp(xn;µ, κ),
with n ∈ N.

3.1.1. Fourier series expansion

Harmonic analysis on spheres provides us with the definition of a
characteristic function for pdfs taking values on Sp−1. In the case of
vMF distribution, due to symmetry, the characteristic function takes
a simple form [11] as the harmonic basis consists in the Legendre
polynomial, i.e.:

fp(x;µ, κ) =
X
δ≥0

Npδ f̂pδ(κ)Ppδ(x
Tµ),

for x ∈ Sp−1, where Npδ is a normalization coefficient, f̂pδ are
the Fourier coefficients and Ppδ(xTµ) the Legendre polynomials of
order δ in dimension p taken at x with respect to the mean vector µ.
The Fourier coefficient of order p is simply obtained by projection
of the distribution on the Legendre polynomial:

bfpδ(κ) = E
h
Ppδ(x

Tµ)
i

=
Iδ+ν(κ)

Iν(κ)
,

where ν = p/2−1 [11]. Now, the Fourier expansion of the distribu-
tion of xt, the resulting vector after a time t, can be expressed easily
thanks to the approximation property of the multiply convolved vMF
given in Theorem 1, i.e. f⊗np (x;κ) ∼ fp(x; κ̃n). Using eq. (14) its
Fourier expansion can be written:

fp(xt;µ, κ) =
X
δ≥0

Npδ bf tpδ(κ)Ppδ(xTt µ),

where bf tpδ(κ) are the Fourier coefficients, also called Legendre poly-
nomial moments, of fp(xt;µ, κ) given by:

bf tpδ(κ) = E
h
Ppδ(x

T
t µ)

i
=
X
n≥0

e−λt(λt)
n

n!
bf⊗npδ , (15)

where bf⊗npδ =
Iδ+ν(κ̃n)

Iν(κ̃n)
is the Fourier coefficients of the n-times

convolved vMF fp(x; κ̃n). The coefficients bf tpδ(κ) are conse-
quently made of infinite series of bf⊗npδ which means that they are
functions of κ̃n that can be related to κ thanks to Theorem 1.

This makes possible the use of a MoM estimation technique to
identify the λt and κ parameters from observations of the vector xt.
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3.2. MoM estimation for the compound Poisson vMF

In order to appreciate the accuracy of the vMF approximation given
in Theorem 1, it is useful to compare with classical distribution and
approximation used in the directional statistics literature. Since κ
and ρ are related by a one-to-one transformation (7), the distribution
is now parameterized by the parameter vector θ = (ρ, λ).

This section addresses the problem of estimating the unknown
parameter vector θ from N independent directions x1

t , . . . ,x
N
t

measured at time t. This is done by matching the Legendre polyno-
mial moments (15) with their empirical values

P pδ =
1

N

NX
i=1

Ppδ(µ
Txit), for all δ ≥ 1.

3.2.1. VMF approximation

Based on eq. (15) and using (8), straightforward computations of the
Legendre moments yield the following MoM equations

P p,1 ≡ f1(λt, ρ) = e−λt(1−ρ),

P p,2 ≡ f2(λt, ρ) = 1− p ρ
κ
λte
−λt(1−ρ)M(1, 2κ+ 1, ρλt),

(16)

with κ = A−1
p (ρ) and M(a, b, z) is the Kummer function [10, pp.

503–515].

3.2.2. Hyperspherical Normal approximation

In the case of large n and ρ, the distribution of xt can be approxi-
mated by the hyperspherical Normal distribution, corresponding to
the Brownian motion on Sp−1 [12]. The corresponding Legendre
coefficients readbf⊗npδ = ρn

δ(δ+p−2)
2 , for all δ ≥ 0, n ≥ 1. (17)

Substituting now bf⊗npδ by (17) in the moment expression (15) yields
the following MoM equations

P p,1 ≡ g1(λt, ρ) = e−λt(1−ρ),

P p,2 ≡ g2(λt, ρ) = e−λt(1−ρ
p).

(18)

3.2.3. Henyey-Greenstein (H-G) approximation

The Henyey-Greestein function is widely used in numerical simula-
tion of multiple scattering of waves and particules [13]. It is only
function of the mean diffusion cosine E

ˆ
xTµ

˜
that can be linked

to the heterogeneity parameter of the scatterers in physics applica-
tions [5]. Due to rotationally symmetry, the tangent part µTx can
be modeled according to a H-G distribution. Since,bf⊗npδ = ρnδ, for all δ ≥ 0, n ≥ 1,

we obtain the following MoM equations

P p,1 ≡ h1(λt, ρ) = e−λt(1−ρ),

P p,2 ≡ h2(λt, ρ) = e−λt(1−ρ
2).

(19)

4. SIMULATION RESULTS

4.1. VMF approximation

To appreciate the accuracy of the vMF approximation given by The-
orem 1, Fig. 1 compares the pdf of the random walk tangent part
µTxn based on the vMF approximation with the real one estimated
from 106 samples when n = 10 steps and p = 3.
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0

0.5
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1.5

(a) ρ = 0.9 (κ ≈ 10)
−0.2 0 0.2 0.4 0.6 0.8 1
0

2
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10

(b) ρ = 0.99 (κ ≈ 100)

Fig. 1. Green bars: histogram of the tangent part t = xTnµ (106

samples); Red line: pdf of the vMF based approximation t̃ = x̃Tnµ
where x̃n ∼Mp(µ, κ̃n)

As expected, Fig. 1(a) shows that for low concentration, the
asymptotic distribution diverges from the real one. However for high
enough concentration, Fig. 1(b) shows the accuracy of the asymp-
totic approximation.

4.2. Estimation performance

These simulations compare the performance of the MoM estimators
of λt and ρ corresponding to the vMF, H-G, or hyperspherical nor-
mal approximations. They are otained by inversing Eq. (16), (19)
and (18) respectively and are referred to as ’VMF’, ’H-G’ and ’Nor-
mal’ respectively in the figures. Since there is no closed-form ex-
pression of the MoM estimators satisfying (16), the corresponding
estimates are numerically evaluated by a Newton-Rhapson like iter-
ative scheme. The number of Monte-Carlo runs is 1000 for all the
figures, while the dimension of the vectors is fixed to p = 3. The
mean number of scattering events is λt = 10 and the mean resultant
length of the events is set to ρ = 0.995 in agreement with the high
concentration asymptotic assumption. The MSEs of the considered
MoM estimators are depicted and compared on Fig. 2 as a function
of the sample size N , using a logarithmic scale. Figs. 2(a) and 2(b)
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Fig. 2. 10 log10 MSEs (dB) vs log10N (ρ = 0.995, λt = 10)

emphasize the interest of the vMF based MoM estimators which are
more efficient especially for small sample size N . It is interesting
to note that the H-G approximation yields inconsistant estimates for
this highly concentrated multiple vMF scattering case. Finally, these
figures show that the vMF approxiamtion yields “reliable” estimates
of ρ and λ for relatively small sample size.
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