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ABSTRACT

This paper considers the problem of reconstructing low-rank matri-
ces from undersampled measurements, when the matrix has a known
linear structure. Based on the iterative reweighted least-squares ap-
proach, we develop an algorithm that exploits the linear structure in
an efficient way that allows for reconstruction in highly undersam-
pled scenarios. The method also enables inferring an appropriate
regularization parameter value from the observations. The perfor-
mance of the method is tested in a missing data recovery problem.

Index Terms— low-rank matrix reconstruction, missing data re-
covery, Cramér-Rao bound

1. INTRODUCTION

In recent times advances have been made in the problem of low-rank
matrix reconstruction from a set of linear measurements in noise
[1, 2]. Low-rank matrices appear in various areas of signal process-
ing and system identification, and has several fields of applications,
including magnetic resonance and spectral imaging [3], wireless sen-
sor networks [4], etc. A variety of methods exist for solving the gen-
eral underdetermined reconstruction problem, cf. [5, 6, 7, 2], sev-
eral of which are based on convex relaxation using the nuclear norm
[8]. Computationally efficient methods for approximating nuclear
norm minimization were developed with performance guarantees in
[9, 10] for the noiseless scenario, based on the iteratively reweighted
least-squares approach (IRLS) [11, 12].

In this paper we consider reconstruction of low-rank matrices
with linear structure. Such matrices arise through e.g. data from low-
order linear systems, pairwise distance measurements, autocorrela-
tion sequences of periodic signals, etc. An alternating least-squares
method for solving the problem was given in [13] but assumed that
the rank of the matrix is known. In this work we draw upon [9, 10]
and formulate an IRLS method for low-rank matrices with linear
structure and unknown rank. This enables reconstruction in highly
underdetermined scenarios since the effective number of parameters
is reduced by structure. Further, we employ the cross-validation ap-
proach for inferring an appropriate regularization parameter value
from the observations. For illustration purposes the IRLS method
for linearly structured matrices (IRLS-L) is applied to a missing data
recovery problem, and compared with the Cramér-Rao bound and an
existing missing data recovery algorithm.

Notation: The invertible vectorization and matrix construction
mappings are denoted vec(·) : Cn×p → Cnp×1 and matn,p(·) :

Cnp×1 → Cn×p, respectively. X∗ and X1/2 denote the Hermitian
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transpose and matrix square root of X. Further, X∗/2 = (X1/2)∗.
The nuclear norm can be computed as ∥X∥∗ = tr{(XX∗)1/2} =∑

i σi, where σi denotes the ith singular value of X. ⌈·⌉ denotes the
ceiling function. |S| is the cardinality of set S. ⟨A,B⟩ , tr (B∗A)
is the inner product.

2. PROBLEM FORMULATION

A matrix X ∈ Cn×p is observed through a linear mapping A :
Cn×p → Cm×1 in zero-mean noise

y = A(X) + n ∈ Cm×1, (1)

where the mapping can be written equivalently in forms,

A(X) =

 ⟨X,A1⟩
...

⟨X,Am⟩

 = Avec(X). (2)

The matrix A is assumed to be known and the measurement noise n
is assumed to be zero-mean, E[nn∗] = σ2Im and σ2 is unknown. In
matrix completion, {Ak} is nothing but the set of element-selecting
operators.

We consider matrices subject to linear constraints on the ele-
ments, X =

∑d
i=1 Siθi, or equivalently, X ∈ XS where XS ,

{X ∈ Cn×p : vec(X) = Sθ,θ ∈ Cd} is a d-dimensional lin-
ear subspace parameterized by S ∈ Cnp×d. This includes Han-
kel, Toeplitz, symmetric, triangular and diagonal matrices [14]. Of
interest here is the set of rank r matrices, Xr , {X ∈ Cn×p :
rank(X) = r}, where r ≪ min(n, p).

The goal is to estimate X ∈ XS ∩Xr from y when the rank r is
unknown. Note that m < d leads to undersampling of the effective
parameters.

3. ITERATIVELY REWEIGHTED LEAST SQUARES

One approach to estimate X with unknown r is to find a matrix
X̂ with minimum rank, subject to some constraint on the residual
∥y−A(X̂)∥22. As rank minimization is intractable in general, meth-
ods have been developed that are based on the convex relaxation of
the problem using the nuclear norm [8]. In adopting this approach,
reconstruction of X can be formulated as a regularized least-squares
problem

X̂ = argmin
X∈XS

∥y −Avec(X)∥22 + λ∥X∥∗, (3)
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where λ is a regularization parameter which controls the cost of the
nuclear norm ∥X∥∗ [2].

Suppose that X has full row rank such that XX∗ is invert-
ible. Let X = UΣV∗ be the singular value decomposition. Then
tr{(XX∗)1/2} = tr{(XX∗)−1/2XX∗} = tr{X∗WX} defining
W , (XX∗)−1/2 = UΣ−1U∗ [10], so that

∥X∥∗ = tr
{
(XX∗)1/2

}
= tr

{
X∗W∗/2W1/2X

}
= ∥W1/2X∥2F .

Further, exploiting X ∈ XS yields

∥W1/2X∥2F = ∥vec(W1/2X)∥22
= ∥(Ip ⊗W1/2)vec(X)∥22
= ∥(Ip ⊗W1/2)Sθ∥22
= ∥Gθ∥22,

where G(W) = (Ip ⊗ W1/2)S. Thus the least-squares problem
(3) can be recast as

θ̂ = argmin
θ∈Cd

V (θ), (4)

where
V (θ) = ∥y −Hθ∥22 + λ∥Gθ∥22

and H , AS. When holding W fixed, the solution to (4) equals

θ̂ = (H∗H+ λS∗(Ip ⊗W)S)
−1

H∗y,

where we used the fact that

G∗G = S∗(Ip ⊗W1/2)∗(Ip ⊗W1/2)S

= S∗(Ip ⊗W)S.

Thus starting from an initial weight matrix W, (3) is amenable to an
iteratively reweighed least-squares formulation, updating θ̂ and W
in an alternating fashion. By exploiting the linear structure, IRLS
needs only to estimate d rather than np parameters which can be a
considerable reduction.

Note, however, that W is predicated on X(θ)X(θ)∗ be-
ing invertible, but as the goal is low rank the computation of
W = UΣ−1U∗ becomes ill-conditioned. Following [10], sta-
bility can be ensured by truncating the smallest singular values to
some ε. The weight matrix is then defined as W = UΣ−1

ε U∗,
where Σε = diag(σ1, . . . , σr−1, σ̄r, . . . , σ̄K) and K = min(n, p).
For all k ≥ r, the singular values are truncated σ̄k ≡ ε, where
r = ⌈K/κ⌉ and κ is user-defined. The threshold value is adaptively
lowered by ε := min(ε, σr/(κr)). For large matrices, the weight
matrix can alternatively be computed using r-truncated singular
value decompositions [9, 10].

The resulting iteratively reweighted least-squares estimator
(IRLS-L) is given in Algorithm 1, starting with some initial weight
matrix W0 and threshold ε0. It is set to terminate when the dif-
ference between iterates is smaller than some threshold, ∥θ̂

ℓ
−

θ̂
ℓ−1∥22 ≤ ϵθ .

Note that when XS is the subspace of diagonal matrices, IRLS-L
includes recovery of sparse vectors as a special case.

Algorithm 1 IRLS-L
1: Input: y, A, S, W0, ε0, κ and λ
2: Set H = AS and r = ⌈min(n, p)/κ⌉
3: W := W0 and ε := ε0
4: repeat
5: θ̂ := (H∗H+ λS∗(Ip ⊗W)S)−1 H∗y

6: [U,Σ] = svd
(

matn,p(Sθ̂)
)

7: Set ε := min{ε, σr/(κr)} and form Σε

8: W := UΣ−1
ε U∗

9: until convergence
10: Output: X̂ = matn,p(Sθ̂)

4. SELECTING REGULARIZATION PARAMETER

Lacking any prior knowledge, an appropriate value of the regular-
ization parameter λ must be inferred from the data y alone. A cross-
validation method aims to predict the ith component yi using the
remaining observations, denoted y(i) ∈ Cm−1, and opts for the λ

that minimizes the resulting prediction errors [15]. Let θ̂
(i)
(λ) de-

note the estimate of θ using y(i) for a fixed λ and h∗
i be the ith row

of H, then the weighted sum of squared prediction errors is

C(λ) =
1

m

m∑
i=1

gi(λ)
∣∣∣yi − h∗

i θ̂
(i)
(λ)

∣∣∣2 . (5)

For notational convenience, let θ̂(λ) = B−1(λ)H∗y denote the
full IRLS-L estimate, where B(λ) = (H∗H + λS∗(Ip ⊗ Wλ)S)
and Wλ is the converged weight matrix. Then the Hermitian matrix
Γ(λ) , Im −HB−1(λ)H∗ produces the residuals e = y−Hθ̂ =
Γ(λ)y. Selecting the weights as gi(λ) ∝ [Γ(λ)]2ii ≥ 0 empha-
sizes the components yi with large residual variances and leads to
the generalized cross-validation method [16].

The computation of the cost function C(λ) can further be sim-
plified. For a fixed W and defining ỹ(i) = H∗y − hiyi,

θ̂
(i)

= (H∗
iHi + λS∗(Ip ⊗W)S)

−1
H∗

iy
(i)

= (B− hih
∗
i )

−1
(H∗y − hiyi)

= B−1 (H∗y − hiyi) +
B−1hih

∗
iB

−1 (H∗y − hiyi)

1− h∗
iB

−1hi

= θ̂ − B−1hiyi(1− h∗
iB

−1hi)−B−1hih
∗
iB

−1ỹ(i)

1− h∗
iB

−1hi

= θ̂ − B−1hiyi −B−1hih
∗
i θ̂

1− h∗
iB

−1hi

= θ̂ − B−1hi

1− h∗
iB

−1hi
(yi − h∗

i θ̂),

where Hi ∈ C(m−1)×d is the observation matrix H after removing
the ith row. Then

yi − h∗
i θ̂

(i)
= yi − h∗

i θ̂ +
h∗
iB

−1hi

1− h∗
iB

−1hi
(yi − h∗

i θ̂)

=
1

1− h∗
iB

−1hi
(yi − h∗

i θ̂)

=
1

[Γ(λ)]ii
(yi − h∗

i θ̂).
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When the weights are normalized as gi = [Γ(λ)]2ii/(
1
m

tr{Γ(λ)})2
[16], (5) can be written as

C(λ) =
∥Γ(λ)y∥2

η(λ)
, (6)

where η = tr{Γ(λ)}2/m. The regularization parameter λ is chosen
to minimize C(λ).

5. EXPERIMENTAL RESULTS

For illustration we apply IRLS-L to a missing data recovery problem,
where d ≪ np. Consider a set of d samples from a sum of K
sinusoids

θ(t) =

K∑
i=1

αi sin(ωit+ ϕi), t = 0, . . . , d− 1,

where the model structure is unknown. The only assumption is that
θ(t) can be modeled as the output of a low-order linear system. A
subset of samples are observed in noise

y(t) = θ(t) + n(t), t ∈ T ⊂ {0, . . . , d− 1}, (7)

where |T | = m and n(t) ∼ N (0, σ2). The goal is to estimate all
samples θ = [θ(0) · · · θ(d − 1)]⊤ ∈ Rd from the noisy subset y ∈
Rm. By arranging θ in a Hankel matrix X(θ) ∈ XS , with unknown
rank r = 2K [17], we can write (7) as y = Avec(X(θ))+n, where,
and A is a sampling matrix selecting the observed elements. Thus
(7) equivalent to the linear observation model (1) and the estimation
problem can be posed as (3).

The performance of IRLS-L is evaluated with respect to the nor-
malized mean square error, NMSE , E[∥θ− θ̂∥2]/E[∥θ∥2]. When
the model order r is known, a low-rank parameterization α ∈ R2r

exists such that θ = g(α), cf. [13]. The Cramér-Rao bound (CRB)
on the mean square error of unbiased estimators θ̂(y, r) is given by

Cθ = ∆⊤
αJ

−1(α)∆,

where ∆α = ∂αg(α)⊤ and J(α) is the Fisher information matrix.
As r is unknown, CRB is an oracle bound in this problem.

Further, we compare with the state of the art iterative adaptive
approach for missing temporal data recovery (MIAA-T) [18]. In this
approach the data is modeled as θ(t) =

∑Kg

k=1 α(ωk)e
jωkt over

a grid of Kg frequencies {ωk}Kg

k=1. First, the complex amplitudes
α(ωk) and covariance matrix R of the observed data are estimated
in an alternating manner based on the model. This results in the
estimates {α̂iaa(ωk)} and R̂iaa. Then, the MIAA-T estimator of the
d−m missing samples is

θ̂0 =

Kg∑
k=1

|α̂iaa(ωk)|2a0(ωk)a
∗
1(ωk)R̂

−1
iaa y ∈ Cd−m,

where a0(ωk) and a1(ωk) denote Fourier vectors corresponding to
the missing and observed samples, respectively [18]. For the remain-
ing samples, we use the MSE optimal unbiased estimate, θ̂1 = y ∈
Cm.
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Fig. 1. Realization of weighted sum of prediction errors C(λ) for
SNR = 25 dB and ρ = 0.30.

5.1. Setup

We consider K = 3 sinusoids with d = 100 samples. The samples
are nominally arranged in a 50 × 51 Hankel matrix X. The ampli-
tudes are equal αi ≡ α = 1 and the phases are drawn independently
as ϕi ∼ U(0, 2π). The frequencies are ω1 = 0.80π, ω2 = 0.10π
and ω3 = 0.06π. Two ratios are varied: sampling factor ρ ∈ (0, 1],
such that m = ⌈ρd⌉, and the signal to noise ratio SNR , α2/σ2.

We set κ = 5, which effectively assumes an upper bound on the
rank to r = 50/5 = 10. The regularization parameter λ is set to
minimize C(λ) in (6). Fig. 1 shows a typical realization of C(λ)
when sweeping over λ ∈ [10−16, 100] in steps of decades. Over a
large span of ρ and SNR-levels, it is found that C(λ) reaches its min-
imum and is virtually constant for λ in the interval [10−14, 10−3].
As higher parameter value penalizes rank, we opt for a value that
promotes the ‘sparsest’ solution, i.e., λ = 10−3. The termination
criterion was set to ϵθ = 5 × 10−4. We initialize the algorithm by
setting the missing samples to 0 and the remaining samples to y.
This defines W0 and we select ε0 as the largest singular value.

For MIAA-T, we follow [18] and set Kg = 103 over a uniform
grid and terminate after 15 iterations.

5.2. Results

Fig. 2 shows a realization of θ(t) and a reconstruction from a given
realization y, when SNR=25 dB and 70% of the samples are ran-
domly discarded. As can be seen IRLS-L is capable of recovering
the missing samples assuming only that they can be modeled as the
output from an unknown low-order linear system.

When computing the NMSE we perform 103 Monte Carlo runs.
Fig. 3 shows the NMSE versus the sampling factor ρ at SNR=25 dB.
The estimation errors of MIAA-T and IRLS-L rapidly decline as ρ
rises to about 0.5. Initially, MIAA-T declines faster but saturates
around ρ = 0.3 and is unable to improve the estimate as more sam-
ples are observed. This is consistent with the results presented in
[18]. By contrast, IRLS-L keeps reducing the NMSE when more
than half of the samples are observed by exploiting the underlying
low-rank structure but remains at a certain gap from the oracle CRB.
In this scenario, the gain of the low-rank method over MIAA-T ap-
proaches 4 dB as ρ rises. Fig. 4 shows that an advantage remains as
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Fig. 2. Example of realization of θ(t) and observation y(t) for ρ =
0.30 and SNR = 25 dB.
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Fig. 3. NMSE versus sampling factor ρ for SNR = 25 dB.

the signal to noise ratio is varied over a wide range of values. When
the algorithms perform approximately equal, at ρ = 0.5, the average
computation times for the current implementations of IRLS-L and
MIAA-T are 0.893 and 4.053 seconds, respectively.

6. CONCLUSIONS AND RELATION TO PRIOR WORK

This paper addressed the problem of reconstructing low-rank matri-
ces with linear structure from undersampled measurements in noise.
The proposed method draws upon the nuclear norm relaxation
framework [8, 5, 7]. Unlike [13], which also deals with structured
low-rank matrices, it does not assume the rank to be known. The
method, denoted IRLS-L, extends the iterative reweighted least-
squares methods developed in [9, 10] to exploit the linear structure,
which can potentially reduce the parameter space significantly.
This enables reconstruction in highly underdetermined scenarios.
It further enables the formulation of a computationally efficient
cross-validation function for inferring an appropriate value of the
regularization parameter from the data alone.
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Fig. 4. NMSE versus SNR for ρ = 0.7.

Finally, IRLS-L was applied to a missing data recovery prob-
lem and compared with the Cramér-Rao bound and a state-of-the-art
method [18].
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