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ABSTRACT

This paper considers the problem of reconstructing low-rank matri-
ces from undersampled measurements, when the matrix has a known
linear structure. Based on the iterative reweighted least-squares ap-
proach, we develop an algorithm that exploits the linear structure in
an efficient way that allows for reconstruction in highly undersam-
pled scenarios. The method also enables inferring an appropriate
regularization parameter value from the observations. The perfor-
mance of the method is tested in a missing data recovery problem.

Index Terms— low-rank matrix reconstruction, missing data re-
covery, Cramér-Rao bound

1. INTRODUCTION

In recent times advances have been made in the problem of low-rank
matrix reconstruction from a set of linear measurements in noise
[1, 2]. Low-rank matrices appear in various areas of signal process-
ing and system identification, and has several fields of applications,
including magnetic resonance and spectral imaging [3], wireless sen-
sor networks [4], etc. A variety of methods exist for solving the gen-
eral underdetermined reconstruction problem, cf. [5, 6, 7, 2], sev-
eral of which are based on convex relaxation using the nuclear norm
[8]. Computationally efficient methods for approximating nuclear
norm minimization were developed with performance guarantees in
[9, 10] for the noiseless scenario, based on the iteratively reweighted
least-squares approach (IRLS) [11, 12].

In this paper we consider reconstruction of low-rank matrices
with linear structure. Such matrices arise through e.g. data from low-
order linear systems, pairwise distance measurements, autocorrela-
tion sequences of periodic signals, etc. An alternating least-squares
method for solving the problem was given in [13] but assumed that
the rank of the matrix is known. In this work we draw upon [9, 10]
and formulate an IRLS method for low-rank matrices with linear
structure and unknown rank. This enables reconstruction in highly
underdetermined scenarios since the effective number of parameters
is reduced by structure. Further, we employ the cross-validation ap-
proach for inferring an appropriate regularization parameter value
from the observations. For illustration purposes the IRLS method
for linearly structured matrices (IRLS-L) is applied to a missing data
recovery problem, and compared with the Cramér-Rao bound and an
existing missing data recovery algorithm.

Notation: The invertible vectorization and matrix construction
mappings are denoted vec(-) : C"*? — C"P*! and mat, ,(-) :
CmP*l 5 C"*P, respectively. X* and X'/2 denote the Hermitian
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transpose and matrix square root of X. Further, X*/2 = (X!/2)*,
The nuclear norm can be computed as ||X||. = tw{(XX*)'/2} =
>, 04, where o; denotes the ith singular value of X. [-] denotes the
ceiling function. |S| is the cardinality of set S. (A, B) = tr (B*A)
is the inner product.

2. PROBLEM FORMULATION

A matrix X € C"*P is observed through a linear mapping A :
C™*P — C™*! in zero-mean noise

y = AX) +necC™, 6
where the mapping can be written equivalently in forms,

(X, A1)

A(X) = = Avec(X). ?2)

(X, Am)

The matrix A is assumed to be known and the measurement noise n
is assumed to be zero-mean, E[nn*| = 21, and o2 is unknown. In
matrix completion, { A} is nothing but the set of element-selecting
operators.

We consider matrices subject to linear constraints on the ele-
ments, X = 21'.121 S;60;, or equivalently, X € Xg where Xg £
{X € C"*? : vec(X) = S6,0 € C?} is a d-dimensional lin-
ear subspace parameterized by S € C"P*¢, This includes Han-
kel, Toeplitz, symmetric, triangular and diagonal matrices [14]. Of
interest here is the set of rank r matrices, X, 2 {X e C™*? .
rank(X) = r}, where r < min(n, p).

The goal is to estimate X € Xs N X, from y when the rank 7 is
unknown. Note that m < d leads to undersampling of the effective
parameters.

3. ITERATIVELY REWEIGHTED LEAST SQUARES

One approach to estimate X with unknown r is to find a matrix
X with minimum rank, subject to some constraint on the residual

lly — A()A() |3. As rank minimization is intractable in general, meth-
ods have been developed that are based on the convex relaxation of
the problem using the nuclear norm [8]. In adopting this approach,
reconstruction of X can be formulated as a regularized least-squares
problem

X = argmin |ly — Avec(X)||3 + A||X]|., 3)
XeXg
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where )\ is a regularization parameter which controls the cost of the
nuclear norm [|X||« [2].

Suppose that X has full row rank such that XX* is invert-
ible. Let X = UXV™ be the singular value decomposition. Then
tr{(XX*)l/z} = r{(XX")"V?XX*} = tr{X*WX} defining
W £ (XX*)"Y/2 = Uz ~1U* [10], so that

X[ = {(xX7)*}
—tr {X*W*/QWI/ZX}
= |[W'2X|%
Further, exploiting X € Xg yields
WX 5 = [[vee(W'/2X)|3
= |1, ® W?)vee(X) |3

= |1, ® W'/?)S0]3
= |Ge|3,

where G(W) = (I, ®
(3) can be recast as

W1/2)S. Thus the least-squares problem

0 = argmin V (0), (€]
occd

where
V() = ly — HO|[3 + \|G6|3

and H £ AS. When holding W fixed, the solution to (4) equals

6= (H'H+ AS™(

I, ® W)S) 'H'y,

where we used the fact that

GG =81, o W/H"(I, ®
=S"(I, @ W)S.

wls

Thus starting from an initial weight matrix W, (3) is amenable to an
iteratively reweighed least-squares formulation, updating 6 and W
in an alternating fashion. By exploiting the linear structure, IRLS
needs only to estimate d rather than np parameters which can be a
considerable reduction.

Note, however, that W is predicated on X(0)X(0)* be-

ing invertible, but as the goal is low rank the computation of

W = UX'U* becomes ill-conditioned. Following [10], sta-
bility can be ensured by truncating the smallest singular values to
some €. The weight matrix is then defined as W = UX_'U*,
where X, = diag(o1,...,07-1,0r,...,0k) and K = min(n, p).
For all k > 7, the singular values are truncated ¢, = &, where
7 = [K/k] and & is user-defined. The threshold value is adaptively
lowered by € := min(e, o=/ (xT)). For large matrices, the weight
matrix can alternatively be computed using 7-truncated singular
value decompositions [9, 10].

The resulting iteratively reweighted least-squares estimator
(IRLS-L) is given in Algorithm 1, starting with some initial weight
matrix Wy and threshold ¢g. It is set to terminate when the dif-
ference between iterates is smaller than some threshold, ||@e —
0" 2 < .

Note that when X’s is the subspace of diagonal matrices, IRLS-L
includes recovery of sparse vectors as a special case.
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Algorithm 1 IRLS-L

: Input: y, A, S, Wy, €0, k and A

: Set H= AS and 7 = [min(n, p)/x|

W :=Wjpande :=¢g

repeat
6 := (H*H + \S*(I, ® W)S) ' H*y
U,x] = svd(matn,p(Sé))
Set € := min{e, o7/ (~7)} and form 3.
W :=UX;'U*

: until convergence

. Output: X = mat,, ,(S6)

—
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4. SELECTING REGULARIZATION PARAMETER

Lacking any prior knowledge, an appropriate value of the regular-
ization parameter A must be inferred from the data y alone. A cross-
validation method aims to predict the ith component y; using the
remaining observations, denoted y(i) € C™™!, and opts for the A

that minimizes the resulting prediction errors [15]. Let é(l) (A) de-
note the estimate of 6 using y(i) for a fixed A and h} be the ith row
of H, then the weighted sum of squared prediction errors is

Zgz

—hG(). ®)

For notational convenience, let #(A\) = B~'(A\)H*y denote the
full IRLS-L estimate, where B(A) = (H*"H + AS™ (I, ® W,)S)
and W is the converged weight matrix. Then the Hermitian matrix
T'(A\) £1,, — HB~'(A)H* produces the residuals e = y — HO =
T'()\)y. Selecting the weights as g;(\) o [['(\)]% > 0 empha-
sizes the components y; with large residual variances and leads to
the generalized cross-validation method [16].

The computation of the cost function C'()\) can further be sim-
plified. For a fixed W and defining y<i> =H"y — h;y,,

(@)

6" = (H;H; + XS™(I, e W)S) ' H;y®

= (B—h;h])" (H'y — hyy;)

_ B 'h;h;B~! (H*y — h,y;)
_ 1 * _ o 14 Y1
=B (H'y — hiy;) + [ —h'B h,
_o_ B 'hiy;(1 — hiB'h;) — B 'h;h; B y®
N 1—h!B-1h;
_p_ B 'huyi- B 'h;h}6
N 1—h!B-lh;

—1 . .

=0 B (- ni),

T 1- th*lhi( :

where H; € C(™~ Y4 is the observation matrix H after removing
the ith row. Then

NG _ . h;B 'h;

—h0+ yi —h;0)

1— h;*B*lhi(
1

T B,

1 (v

T

—h}0)

—h}9).



[T/ G {T () })?

When the weights are normalized as g; =
[16], (5) can be written as

_ eyl

cN =0

; Q)

where 1 = tr{I'(\)}?>/m. The regularization parameter \ is chosen
to minimize C'()\).

5. EXPERIMENTAL RESULTS

For illustration we apply IRLS-L to a missing data recovery problem,
where d < mp. Consider a set of d samples from a sum of K
sinusoids

K
0(t) = aisin(wit+¢:), t=0,...

i=1

7d_17

where the model structure is unknown. The only assumption is that
0(t) can be modeled as the output of a low-order linear system. A
subset of samples are observed in noise

y(t) =0(t)+n(), teT c{0,...,d—1}, @
where 7| = m and n(t) ~ N(0,5°). The goal is to estimate all
samples @ = [0(0) ---0(d — 1)] T € R from the noisy subset y €
R™. By arranging 6 in a Hankel matrix X (@) € Xs, with unknown
rank r = 2K [17], we can write (7) as y = Avec(X(6))+n, where,
and A is a sampling matrix selecting the observed elements. Thus
(7) equivalent to the linear observation model (1) and the estimation
problem can be posed as (3).

The performance of IRLS-L is evaluated with respect to the nor-
malized mean square error, NMSE £ E[||0 — 8]?]/ E[||0]|%]. When
the model order r is known, a low-rank parameterization o € R2"
exists such that @ = g(a), cf. [13]. The Cramér-Rao bound (CRB)

on the mean square error of unbiased estimators 6(y, r) is given by
Co=ALT " a)A,

where A, = dag(c)" and J(cv) is the Fisher information matrix.
As r is unknown, CRB is an oracle bound in this problem.

Further, we compare with the state of the art iterative adaptive
approach for missing temporal data recovery (MIAA-T) [18]. In this
approach the data is modeled as 6(t) = ZkKﬁl a(wk)e?™r* over
a grid of K, frequencies {wk}f:g 1- First, the complex amplitudes
a(wy) and covariance matrix R of the observed data are estimated
in an alternating manner based on the model. This results in the
estimates { s (wy)} and ﬁiaa. Then, the MIAA-T estimator of the
d — m missing samples is

>

Kg
0= ldia(wn) a0 (wr)a] (we) Ry, 'y € €47,
k=1

where ag(wy) and a1 (wy) denote Fourier vectors corresponding to
the missing and observed samples, respectively [18]. For the remain-
ing samples, we use the MSE optimal unbiased estimate, 81 =y €
c™.
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Fig. 1. Realization of weighted sum of prediction errors C'(\) for
SNR = 25 dB and p = 0.30.

5.1. Setup

We consider K = 3 sinusoids with d = 100 samples. The samples
are nominally arranged in a 50 x 51 Hankel matrix X. The ampli-
tudes are equal a; = a = 1 and the phases are drawn independently
as ¢; ~ U(0,2m). The frequencies are wi; = 0.807, w2 = 0.107
and w3 = 0.067. Two ratios are varied: sampling factor p € (0, 1],
such that m = [pd], and the signal to noise ratio SNR £ o /a2

We set k = 5, which effectively assumes an upper bound on the
rank to 7 = 50/5 = 10. The regularization parameter X is set to
minimize C'(A) in (6). Fig. 1 shows a typical realization of C'(\)
when sweeping over A\ € [10*16, 100] in steps of decades. Over a
large span of p and SNR-levels, it is found that C'(\) reaches its min-
imum and is virtually constant for X in the interval [107'* 1073].
As higher parameter value penalizes rank, we opt for a value that
promotes the ‘sparsest’ solution, i.e., A = 107°. The termination
criterion was set to g = 5 x 10™%. We initialize the algorithm by
setting the missing samples to O and the remaining samples to y.
This defines Wy and we select ¢q as the largest singular value.

For MIAA-T, we follow [18] and set Ky = 10° over a uniform
grid and terminate after 15 iterations.

5.2. Results

Fig. 2 shows a realization of 6(t) and a reconstruction from a given
realization y, when SNR=25 dB and 70% of the samples are ran-
domly discarded. As can be seen IRLS-L is capable of recovering
the missing samples assuming only that they can be modeled as the
output from an unknown low-order linear system.

When computing the NMSE we perform 10® Monte Carlo runs.
Fig. 3 shows the NMSE versus the sampling factor p at SNR=25 dB.
The estimation errors of MIAA-T and IRLS-L rapidly decline as p
rises to about 0.5. Initially, MIAA-T declines faster but saturates
around p = 0.3 and is unable to improve the estimate as more sam-
ples are observed. This is consistent with the results presented in
[18]. By contrast, IRLS-L keeps reducing the NMSE when more
than half of the samples are observed by exploiting the underlying
low-rank structure but remains at a certain gap from the oracle CRB.
In this scenario, the gain of the low-rank method over MIAA-T ap-
proaches 4 dB as p rises. Fig. 4 shows that an advantage remains as
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Fig. 2. Example of realization of #(t) and observation y(¢) for p =
0.30 and SNR =25 dB.
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Fig. 3. NMSE versus sampling factor p for SNR =25 dB.

the signal to noise ratio is varied over a wide range of values. When
the algorithms perform approximately equal, at p = 0.5, the average
computation times for the current implementations of IRLS-L and
MIAA-T are 0.893 and 4.053 seconds, respectively.

6. CONCLUSIONS AND RELATION TO PRIOR WORK

This paper addressed the problem of reconstructing low-rank matri-
ces with linear structure from undersampled measurements in noise.
The proposed method draws upon the nuclear norm relaxation
framework [8, 5, 7]. Unlike [13], which also deals with structured
low-rank matrices, it does not assume the rank to be known. The
method, denoted IRLS-L, extends the iterative reweighted least-
squares methods developed in [9, 10] to exploit the linear structure,
which can potentially reduce the parameter space significantly.
This enables reconstruction in highly underdetermined scenarios.
It further enables the formulation of a computationally efficient
cross-validation function for inferring an appropriate value of the
regularization parameter from the data alone.
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Fig. 4. NMSE versus SNR for p = 0.7.

Finally, IRLS-L was applied to a missing data recovery prob-
lem and compared with the Cramér-Rao bound and a state-of-the-art
method [18].
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