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ABSTRACT

Accurate estimation of undersampled time-varying signals im-
proves as stronger signal models provide more information to aid the
estimator. In class Kalman filter-type algorithms, dynamic models
of signal evolution are highly leveraged but there is little exploita-
tion of structure within a signal at a given time. In contrast, stan-
dard sparse approximation schemes (e.g., L1 minimization) utilize
strong structural models for a single signal, but do not admit obvious
ways to incorporate dynamic models for data streams. In this work
we introduce a causal estimation algorithm to estimate time-varying
sparse signals. This algorithm is based on a hierarchical probabilis-
tic model that uses re-weighted L1 minimization as its core compu-
tation, and propagates second order statistics through time similar
to classic Kalman filtering. The resulting algorithm achieves very
good performance, and appears to be particularly robust to errors in
the dynamic signal model.

1. INTRODUCTION

Many real-time applications, such as real-time compressive video
acquisition or real-time network tomography, require us to causally
estimate a time-varying signal from a sequence of measurements.
Such causal signal estimation is sometimes referred to as dynamic
filtering. While batch methods that seek to estimate a series of corre-
lated signals have flexibility in terms of how to leverage correlations
between the signals, dynamic filtering is a more restrictive problem
in at least three ways. First, no future data is available, limiting
the information that can be used at each time step. Second, since dy-
namic filtering typically needs to be performed over long time spans,
approaches require a concise and efficient way to store the previous
information needed for estimation. Lastly, the actual estimation pro-
cedure at each time step needs to be computationally efficient to be
effectively applied to the data stream.

In this paper, we focus on time-varying signals where we have
an a-priori model for how the signal evolves in time,

xn = fn (xn−1) + νn

where xn ∈ RN is our signal of interest, fn(·) : RN → RN is our
dynamic evolution function (which is potentially different at each
time step) and νn ∈ RN is the innovations. The innovations repre-
sents the error in our assumed dynamic model fn(·). In this work
we will be particularly interested in the case where the signal xn is
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sparse in some representation (i.e xn = Ψan where an is mostly
composed of zeros). We denote a signal to be s-sparse if only at
most s non-zero coefficients are present. The signals themselves are
sensed via a linear sensing matrix

yn = Gnxn + εn

where yn ∈ RM are the measurements taken at each iteration,
Gn ∈ RM×N is the sensing matrix and εn is the measurement er-
ror. While in some applications it may be convenient to haveGn be
the same at each iteration, here we treat the general case where the
measurements are different for all n.

Our goal is to use only information available at time n to infer
xn. This means that we have access to all yk for k ≤ n. While gen-
erally we could design an estimation procedure which uses all yk
directly to infer xn, such an estimation procedure would be com-
putationally impractical as n becomes large. Instead we focus on
methods similar to Kalman filtering [1] which use local informa-
tion efficiently by retaining a set of parameters to use in the estima-
tion procedure. In standard streaming estimation procedures such as
Kalman filtering, the parameters used are the covariance matrix and
the previous state estimate. The use of the covariance matrix, how-
ever, relies on Gaussian and linear assumptions that are not present in
applications where the signals and innovations do not follow Gaus-
sian statistics. In this work we stray from these assumptions since
sparse signals follow a different set of statistics, requiring us to uti-
lize different parameters native to sparse signals.

To date, a number of algorithms have been designed to address
the problem of dynamically filtering undersampled, sparse, time-
varying signals. Some of these methods seek to directly modify
the equations that stem from the Kalman filter directly to account
for sparsity [2], to use the Kalman filter equations on a restricted
support [3], or to use sparse recovery optimization problems with
additional norms to include temporal information [4]. Other meth-
ods work on specific time-varying models, such as characterizing the
innovations to be sparser than the signal itself [5] or treating the sig-
nal’s temporal evolution as a Gauss-Bernoulli signal with Markov
transitions on the support [6]. We propose a methodology which
uses precisely the same problem formulation as the Kalman filter-
ing problem, but design a new probabilistic model to account for the
non-Gaussian nature of the signal. We then derive an expectation-
maximization (EM) algorithm that recovers the signals. Lastly, we
test the resulting algorithm, reweighted `1 dynamic filtering (RWL1-
DF), showing its effectiveness and robustness to the innovations’
statistics.
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2. BACKGROUND

2.1. Kalman Filtering

Most standard dynamic filtering techniques are based on the Kalman
filter [1]. In the Kalman filter framework, the signal at each time step
is recovered using the estimate of the previous time step x̂n−1 and a
calculated covariance for that estimate Pk−1.

x̂n = arg min
x

[
‖yn −Gnx‖22,Rn+

‖x− Fnx̂n−1‖22,(Qn+FPn−1FT )

]
where R ∈ RM×M is the covariance matrix for the measurement
error, Q ∈ RN×N is the covariance matrix for the innovations,
F ∈ RN×N is the linear version of the dynamics function fn(·), and
the matrix weighted norm is defined as ‖z‖22,R = zTR−1z. The
allure of the Kalman filter is that while the optimization in Equa-
tion (2.1) uses only local information, it solves a global optimization
problem. This property, however, is due to the linearity of both the
measurement and dynamics functions as well as the Gaussian nature
of the signal, measurement error, and innovations.

In cases where the linearity and Gaussianity conditions are not
met, alternate methods based on the Kalman filter have been pro-
posed. The extended Kalman filter, for example, addresses the case
of non-linear dynamics by linearizing around a point [7]. The EKF
is limited, however, in that vary nonlinear functions are not well ap-
proximated by the linearization. Particle filtering techniques seek to
bypass needing closed form solutions to the signal statistics by per-
forming Monte-Carlo type sampling. The sampled points are used to
approximate moments of the signal statistics to use in the estimation
procedure. One of the more well known versions is the unscented
Kalman filter (UKF) which uses a sampling scheme that targets min-
imal distortion in the second moment [8]. None of these various ex-
tensions, though, allow for straightforward incorporation of explicit
signal structure such as sparsity.

2.2. Sparse Signal Recovery

We seek to incorporate sparsity structure in to dynamic filtering
due to its growing utility in a number of important applications
(e.g. inverse problems in image processing [9] and hyperspectral
imagery [10]). With sparsity knowledge of a signal, the signal can
be recovered from many fewer measurements than would otherwise
be required [11]. Typical measurement rates grow linearly with the
sparsity and polylogarithmically with the ambient dimension [11].
In standard sparse recovery, the signal coefficients a may be recov-
ered using the Basis Pursuit De-Noising (BPDN) optimization

ân = arg min
x

[‖yn −GnΨa]22 + λ‖a‖1

where ‖z‖1 =
∑
i |z[i]| is referred to as the `1 norm and λ trades

off between the `2 data fidelity term and the `1 sparsity inducing
norm. The signal is then reconstructed via x̂ = Ψâ.

The BPDN optimization assumes that the variable λ (represent-
ing the SNR for each coefficient) is known a-priori and the same for
each coefficient, which may not be the most accurate signal model.
One way to extend BPDN is to use a different value of λ for each
coefficient and adapt these values depending on the data. While a
complete optimization problem can be written in terms of minimiz-
ing a cost function for both the coefficients a and the λ parameters
λ (where dim(λ) = dim(a)), the desired (non-convex) program
is typically solved via a variational algorithm where λ is updated

between solving a series of weighted BPDN programs [12]. In par-
ticular, this reweighted `1 (RWL1) optimization program solves

âtn = arg min
a

[‖yn −GnΨa]22 + λ0

∑
|λ̂t−1
n [i]a[i]|

with the weight update

λ̂tn[i] =
τ

|âtn[i]|+ η

where λ0, α and β are constants, t is the algorithmic iteration num-
ber (taken to increase until some convergence criterion has been met)
and the signal estimate is x̂n = Ψân.

As described in [13], the RWL1 approach described above can
be viewed as a Bayesian inference problem for a hierarchical proba-
bilistic model. In [13], the coefficients an and are treated as Lapla-
cian random variables (conditioned on λ variables) to be inferred
from the linear measurements under Gaussian measurement noise
assumptions (Gaussian likelihood p(y|a)). The λ parameters are
treated as random variables with Gamma hyperpriors, and these val-
ues modulate the variances of the Laplacian coefficient priors. Once
these distributions are defined, the reweighted optimization comes
from applying an expectation-maximization (EM) approach to solv-
ing the complete MAP inference. The distribution on λ can be ad-
justed based on any information we have about the signal being es-
timated (i.e., encouraging or discouraging coefficients to be active a
priori by making λ likely to be small or large). Therefore, this hi-
erarchical probabilistic model provides a way to include additional
regularization information from the temporal dynamics model into
the second moments of the variables of interest, much like in the
Kalman filtering framework.

3. RE-WEIGHTED `1 DYNAMIC FILTERING

In our approach, we wish to encourage the signal estimate to take on
values predicted using a temporal model while not explicitly penal-
izing errors. In essence, we seek to influence the estimate by having
the weights (in the RWL1 iterations) be affected both by the past
signal estimate as well as the new measurements. Our probabilistic
model accomplishes this task via the second order variables, embod-
ied by λ.

In our probabilistic model construction, we retain key features of
the RWL1 model that give it the sparsity inducing properties while
inducing temporal correlation by tying together the distributions of
the hyperpriors with the previous state. Our variable probability dis-
tributions are defined as

p(yn|an) ∝ e−
1

2σ2
‖yn−GnΨan‖22 (1)

p(an[i]|λn[i]) = λ0
λn[i]

2
e−λ0λn[i]|an[i] (2)

p(λn[i]|λn−1) =
λα−1
n [i]

θαn [i]Γ(α)
e−λn[i]/θn (3)

where α and λ0 are constants, and θn is the vector which controls
the mean and variance of the Gamma distribution over λn,

θn[i] = ξ
(
|Ψ−1fn(Ψan−1)[i]|+ η

)−1

for some model parameters ξ and η. The graphical representation of
this probabilistic model (shown in Figure 1) shows that the variable
dependencies causally feed forward in time, implying additional reg-
ularization which we can leverage in the signal estimation.
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Fig. 1. The flow of information in the RWL1-DF model has temporal
priors where the current variance values are dependent on a function
of the past state.

We can use these distributions to write a MAP estimate for an
and λn at time n as{

â, λ̂
}

= arg min
a,λ
− log

(
p(yn|an)p(an|λn)p(λ|λ̂n−1)

)
By plugging in the distributions in Equations (1)- (3), we can use the
EM approach to derive update steps for ân and λ̂n. Specifically, we
derive the update equations

âtn = arg min
a

[‖yn −GnΨa]22 + λ0

∑
|λ̂t−1
n [i]a[i]| (4)

and

λ̂tn[i] =
(1 + α)ξ

λ0ξ|âtn[i]|+ |Ψ−1fn (Ψân−1) [i]|+ η
. (5)

In the standard RWL1 algorithm, values that are estimated to
be high in the weighted `1 optimization result in lower weights via
the weight update step, while off values result in higher weights.
In the next weighted `1 optimization, these weights encourage the
‘on’ values to remain on and obtain higher values while encouraging
‘off’ values to remain low and tend to zero. Equation (5) for our
modified RWL1-DF algorithm allows the weights to also be effected
by past estimate, encouraging predicted values to be active while still
allowing for information from the measurements to contradict the
prediction and correct the estimate. One major advantage here is that
since no explicit norm ties the prediction and the estimate together,
the estimation procedure should be more robust to the statistics of
the innovations, a behaviour we see empirically in our simulations.

4. RESULTS

We test the RWL1-DF algorithm both on simulated data and com-
pressive recovery of a video sequence. We compare performance
against the BPDN and RWL1 algorithms applied independently
at each time step and a time dependent version of BPDN (BPDN
Dynamic Filtering: BPDN-DF) that includes an additional history-
dependent regularization norm as

ân = arg min
a
‖yn −GnΨa‖22 + λ‖a‖1 + γ‖a− fn (ân−1) ‖pp

where λ and γ are constants that trade off between historical infor-
mation, sparsity, and measurement fidelity, p dictates the assumed
innovations statistics, and the signal estimate is x̂n = Ψân [4,
14]. In simulated data where ground truth is known, we also com-
pare against an optimal oracle (i.e., support is known a-priori) least-
squares solution. To evaluate the recovery, we use the relative mean-
squared error (rMSE),

erMSE =
‖x̂− x‖22
‖x‖22

.

In the case of simulated data, we generate 100 time-step se-
quences of 500-length vectors that are 20-sparse. The dynamics
function is a randomly drawn permutation matrix with a random
scaling (the dynamics are different at each iteration). The dynamics
are assumed to be known up to a few misplaced support, implying
a sparse innovations where the sparsity is twice the number of mis-
placed values, and the measurements matrices are random Gaussian
matrices. For the simulated data we use the recovery parameters:
λ = 5.5 ∗ 10−4 for BPDN, λ0 = 0.0011, τ = 2 and η = 0.01
for RWL1, λ = 5 ∗ 10−4, γ = 2.5 ∗ 10−4 and p = 1 for BPDN-
DF, and λ0 = 0.0011, η = 0.01, λ0ξ = 1 and (1 + α)ξ = 2
for RWL1-DF. First we fix the mean innovations sparsity to 6 (the
support mismatch is Poisson with mean 3), and sweep the number
of measurements from 55 to 110. The steady state rMSE was aver-
aged over 40 trials and the results are plotted in Figure 2. The steady
state rMSE for RWL1-DF stays at less than 1% rMSE down to 65
measurements, at which point BPDN-DF (with p = 1 due to the
sparse innovations) has approximately 7% rMSE and both BPDN
and RWL1 are over 20% rMSE. We then fix the number of measure-
ments to M = 70 and sweep the mean innovations sparsity from
2 to 10 (again the mismatch is a Poisson). While for small innova-
tions sparsity BPDN-DF and RWL1-DF both perform close to the
optimal least-squares performance, RWL1-DF is much more robust
to the change in innovations sparsity, retaining an rMSE error of less
than 1.6% rMSE steady state error for up to 8-sparse innovations.
BPDN-DF, meanwhile, increases to 8.6% rMSE.

60 70 80 90 100 110
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of Measurements

S
te

a
d

y
 S

ta
te

 r
M

S
E

 

 

BPDN
RWL1
BPDN−DF
RWL1−DF
Opt LS

Fig. 2. We recover 500-length, 20-sparse signals from M measure-
ments where we sweep M from 55 to 110. For smaller numbers of
measurements, RWL1-DF achieves a lower steady-state rMSE than
BPDN-DF, and the time independent BPDN and RWL1.
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Fig. 3. We sweep the average innovations sparsity from 2 to 10,
keeping the same model parameters as in Figure 2 and fixing the
number of measurements to M = 70. While both BPDN-DF and
RWL1-DF perform comparably at low innovations sparsity, the error
from RWL1-DF remains low for higher innovations sparsity (higher
model mismatch).

For the compressive video recovery, we take M = 0.25N ran-
domly subsampled noiselets from 200 consecutive frames of the
foreman video sequence1. We recover the video sequence using the
dual-tree wavelet transform as the sparsity basis [cite] and the fol-
lowing parameters: λ = 0.01 for BPDN, λ0 = 0.001, τ = 0.05 and
η = 0.1 for RWL1, λ = 0.01, γ = 0.3 and p = 2 for BPDN-DF,
and λ0 = 0.001, η = 0.2, λ0ξ = 1 and (1 + α)ξ = 0.4 for RWL1-
DF. The recovery rMSE of each frame (shown in Figure 4) shows
that while BPDN-DF can use dynamical information to enhance the
recovery from time-independent recovery, RWL1-DF achieves even
lower errors, typically staying below 2% rMSE.
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Fig. 4. Recovery of the foreman video sequence from compressive
samples.

1The foreman video sequence can be found at
http://www.hlevkin.com/TestVideo/foreman.yuv .

5. CONCLUSIONS

In this work we show the benefits of utilizing the weight parameters
in the RWL1 algorithm for dynamic filtering of sparse signals. The
recovery performance of our reweighted `1 dynamic filtering algo-
rithm, in both simulated experiments and compressive recovery of
video sequences, demonstrates improvement over time-independent
recovery and simple norm-regularized time dependent recovery. In
particular our simulations highlight a robustness of RWL1-DF to the
innovations statistics, which can be particularly important in sparse
signal regimes where the innovations may be difficult to quantify.

As a note on the complexity of RWL1-DF, although we have
added significant a-priori information in RWL1-DF as opposed to
standard RWL1, the computational cost is essentially unchanged.
Even the number of reweighting steps seems unchanged between the
two algorithms. Recent advances in homotopy methods for RWL1
algorithms could significantly improve algorithmic speed [15]. Ad-
ditionally, reweighted algorithms can be written as continuous time
systems [16], enabling the possibility of analog implementations in
dedicated hardware [17].
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