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ABSTRACT

Technological improvements have led to situations where data sets
are sufficiently rich that in the interests of processing speed it is desir-
able to throw away samples that provide little additional information.
This is referred to here as data sparsification. The first contribution is
a study of a recently proposed data sparsification scheme; ideas from
vector quantisation are used to assess its performance. Informed by
this study, a modification of the data sparsification algorithm is pro-
posed and applied to the problem of estimating a kernel-based mea-
sure of independence of two datasets. (Given i.i.d. observations from
two random variables, x and y, the underlying problem is to deter-
mine whether or not x and y are independent of each other.) The
second contribution of this paper is to make recursive an existing
algorithm for measuring independence and able to operate on both
raw data and on sparsified data generated by the aforementioned data
sparsification algorithm. Compared with the original algorithm, the
recursive algorithm is significantly faster due to its lower memory
and computational requirements.

Index Terms— sparse, dictionary, kernel, quantisation, indepen-
dence

1. INTRODUCTION

Roughly speaking, kernel-based methods work by converting low-
dimensional nonlinear problems into high-dimensional linear prob-
lems. Importantly, by choosing the high-dimensional space to be a
reproducing kernel Hilbert space (RKHS), geometric operations such
as evaluating inner products can be computed efficiently. Neverthe-
less, as the number of data points increases, the corresponding Gram
matrix (defined in Section 3) becomes larger and more costly to work
with. There is therefore an incentive to reduce the raw number of data
points fed into a kernel-based algorithm.

Of particular interest in this paper is a kernel-based algorithm
for computing an empirical measure of independence. Such an al-
gorithm takes as input pairs of i.i.d. observations {(xi, yi}, i =
1, 2, · · · , N}, and outputs a nonnegative number whose closeness to
zero is a measure of independence between the random variables X
and Y . (In fact, this number is the Hilbert-Schmidt norm of a certain
linear operator constructed from the data and, under mild conditions,
will approach zero as the number of data points grows if and only if
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X and Y are independent.) The two main contributions of the paper
are:

1. the derivation of a recursive algorithm for computing an em-
pirical measure of independence of pairwise observations; and

2. a data sparsification front-end for the aforementioned algo-
rithm that (greatly) reduces the number of pairwise observa-
tions required for an accurate measure of independence.

The second contribution is interesting in its own right because
a wide range of algorithms can benefit from data sparsification.
The underlying idea is straightforward: given i.i.d. observations
Z1, Z2, · · · , for most intents and purposes, it suffices to form an em-
pirical histogram of the data and replace the original data by data re-
sampled from this empirical histogram. Essentially the only question
here is an appropriate choice of bin size used to form the histogram.

One way of doing this is to build up a dictionary of observations.
As each new data point is observed, it is compared with all the exist-
ing entries in the dictionary. If it is sufficiently close to a dictionary
entry, the data point is replaced by the closest dictionary entry; in
Section 2, this is likened to data quantisation. Otherwise, the new ob-
servation is left unchanged and added to the dictionary. This can be
viewed as forming an empirical histogram using adaptive bin sizes.
Of course, the issue remains of how to measure the closeness of a
new observation to those in the dictionary. In the machine-learning
literature, a so-called coherence criterion is commonly used. This is
discussed in Section 2, along with several extensions of existing data
sparsification algorithms.

Section 3 derives a recursive algorithm for computing an empiri-
cal measure of independence. Its recursive nature, combined with the
proposed data sparsification front-end, means its computational com-
plexity and memory requirements are significantly lower than those
of its competitors. This allows it to be applied to large datasets such
as those occurring in neuroscience, where one seeks to understand
which areas of the brain communicate with which other areas.
Earlier Works. The underlying challenge addressed by this paper is
how to reduce the computational complexity of working with high-
dimensional Gram matrices. To date, popular approaches include the
Nyström method and low-rank approximations (as provided by the
incomplete Cholesky decomposition [4]). Many of the usual tech-
niques are detailed in classical monographs such as [13, 11]. For
the particular application of computing the HSIC (Section 3), the
computational complexity was reduced by applying the incomplete
Cholesky decomposition [7, 14]. We have taken a different approach
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and derived a recursive version of the algorithm. It appears to have
lower complexity than competing methods.

Dictionary-based data sparsification schemes have been pro-
posed especially for the design of on-line algorithms [3, 8, 12]. Here,
we give a vector quantisation perspective to dictionary-based data
sparsification, and use this perspective to motivate an application to
the estimation of mean elements [9]. The idea of quantisation has
also been used very recently in the context of the kernel LMS al-
gorithm [2]. It has also occurred in a very different context closely
linked to information theory, as for example in [10].

2. SPARSIFICATION AND VECTOR QUANTISATION

Coherence based sparsification. Consider a problem involving a
data set Sn = {xi, i = 1, . . . , n} of i.i.d. random vectors defined on
some probability space, and taking values in an appropriate metric
space, say Rnx . The problem can be an inference problem, such as
estimating a parameter from the data set, or finding a functional link
between some components of the vectors, or taking some decision
based on the observed data. In any case, we assume that we deal
with an approach where the data are embedded into a reproducing
kernel Hilbert space (rkHs) Hx using the kernel kx : Rnx −→ Hx.
For a review of kernel methods and rkHs we refer to [11, 13, 15]

The sparsification technique based on the coherence is the fol-
lowing. It consists in a recursive construction of a dictionary, ac-
cording to which new data are added if and only if they are deemed
to lack sufficient coherence with the elements of the dictionary. Let
Dn be a subset of size s(n) of {1, . . . , n}. We index the elements
of the dictionary by greek letters. The dictionary contains the time
index of the variable retained. For n = 1 we simply set D1 = {1}.
Let µ be a real number less than or equal to 1. The dictionary is
recursively grown by the simple rule

Dn=Dn−1∪{n}⇐⇒ max
α∈Dn−1

∣∣kx(x, xα)
∣∣√

kx(x, x)kx(xα, xα)
< µ (1)

The kernel is in the sequel chosen to be of unit norm. This sim-
plifies the criterion since for any x, this means kx(x, x) = 1.
This criterion proposed by Richard in [12] is a simplification of
the approximate linear dependence (ALD) criterion of [3]. The
latter is based on linear estimation of a candidate kx(., xn) from
the members {kx(., xα), α ∈ Dn−1} of the dictionary. Since the
fundamental ingredient of linear estimation is correlation, a candi-
date kx(., xn) is likely to be added to the dictionary by ALD if
the correlations

〈
kx(., xn)

∣∣kx(., xα)
〉
, α ∈ Dn−1 are small. But

thanks to the reproducing property, these correlations are nothing
but kx(xα, xn), α ∈ Dn−1, whence the coherence criterion. Note
that this criterion have close connection with the criterion used in
[8] for the Kernel LMS. As shown in [12], the size of the dictionary
is ensured to remain finite as long as the data live in some compact
subspace. Therefore, theoretically this precludes the application of
the technique to unbounded data (Gaussian random variables say).
Practically however, the growth rate of the dictionary for unbounded
data appears very slow since it is dominated at long times by low
probabilities events. In the sequel, we restrict the discussion to radial
kernels k(x, y) = ϕ

(
d(x, y)

)
, ϕ being a strictly decreasing func-

tion from R+ to itself with ϕ(0) = 1; d is a metric on the input
space (typically the Euclidean distance in Rk for signal processing
applications). This restriction includes the widely used Gaussian and
exponential kernels.
Vector quantisation perspective. The restriction of the kernels con-
sidered to radial kernels allows a simplification of the coherence cri-

terion, namely

Dn = Dn−1 ∪ {n} ⇐⇒ min
α∈Dn−1

d(x, xα) > ϕ−1(µ) (2)

This means that a candidate kx(., xn) is added to the dictionary if
and only if the datum x is sufficiently far away from all the data
whose indices are in the dictionary. Equivalently, this means that the
datum x is not included into the dictionary if there exists an index
α ∈ Dn−1 such that x ∈ Vα := {w : d(w, xα) ≤ ϕ−1(µ)}. As
recalled earlier, if the data live in a compact subset of the input space,
the the size of the dictionary remains finite as n goes to infinity. This
fact is easily understood with the equivalent formulation. When the
final size s of the dictionary which depends on µ and ϕ is attained,
the set Vα is nothing but a Voronoı̈ cell defined by the metric d and
the set Dn.

In an algorithm where a dictionary as built above is used, the data
set is thus reduced to the subset of samples whose indices belong to
the dictionary. Therefore, if a new datum is to be processed, it will be
compared using kx only to the xα, α ∈ Dn. In this spirit, the spar-
sification is a vector quantisation of the input space. Furthermore,
this quantisation is adaptive, and in the limit, produces a grid which
is very much like a regular grid. Indeed, space is filled with points
which are all separated by a distance at least ϕ−1(µ), but no more
than 2ϕ−1(µ), otherwise there would be some space to add a new
vector to the dictionary. This is illustrated in Figure (1). As seen in
the figure, the quantisation provides an almost regular grid of points
selected adaptively, and almost independently of the distribution of
the data. By comparison, a usual optimal quantisation in theL2 sense
would provide a partition more closely adapted to the distribution of
the data.

Thus, if used alone, the partition obtained after sparsification
looses a lot of information from the distribution. Therefore, if
coherence-based sparsification is used, we can imagine obtaining
some gain in the processing by including in the algorithms the em-
pirical distribution based on the partition. This is done by defining
πn(α) =

∑n
i=1 1(xi ∈ Vα) and using n−1πn(α) as the empirical

measure of the data based on the adaptive partition.
Adapting the dictionary, a simple example. To illustrate this, con-
sider the problem of estimating the mean element of a rkHs Hx, de-
fined as the function mx(.) = E[kx(., x)], where E stands for the
expectation over the distribution of x. For information about ran-
dom variables having values in Hilbert spaces, we refer to [5], and to
[1] for the particular case of rkHS. To estimate the mean element,
we can use the empirical estimator menx(.) = n−1∑

i k(., xi).
Practically, evaluating menx(.) at a point u requires the computa-
tion of k(u, xi) for all i included in the sum. In some applica-
tions this could be problematic when the number of data is large
and must be stored for later use. However, if a sparsification pro-
cedure has been applied, storage requirements may become man-
ageable. This motivates the following. We suppose having already
the partition D of the data based on the coherence criterion. This
amounts to forgetting an initial period of time during which the
learning of the dictionary is done. Then we compare two estima-
tors mn

i,x =
∑
α∈Dn

k(., xi,α)πn(α)
n

, i = 1, 2, where x1,α = xα

and x2,α = x̄α = πn(α)−1∑
k≥1 xk1(xk ∈ Vα). In the first

estimator, all elements falling into the cell Vα are replaced by the
center of the cell xα. In the second one, we use the knowledge of
vector quantisation to replace the center by the estimated centroı̈d
(or k-means) of the cell. For any f ∈ Hx, we evaluate

〈
f
∣∣mi,x

〉
to obtain an estimation of E[f(x)]. Then it can be shown that the
conditional bias of both estimators is mainly due to quantisation er-
rors in the quadrature E[f(x)] ≈

∑
α∈Dn

k(., xc)Px(Vα) where
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Fig. 1. Illustration of the vector quantisation induced by the coher-
ence criterion, and comparison to usual vector quantisation (big dots
are centers of the cells, small dots are the data points). Voronoı̈ cells
associated to the coherence sparsification (Left) and to the optimal
(L2) vector quantisation (Right). Up: Gaussian in x, Exponential in
y data. Down: Gaussian data

xc = xα is the center of the cell for estimator 1, and xc = x̄α is
the centroı̈d of the cell for estimator 2. It is well-known from numer-
ical analysis that taking the center to be the centroı̈ds gives a gain
of one order of magnitude in the convergence rate of this approxi-
mation. This gain occurs here conditionally to the partition, and the
fluctuations of the conditional mean will be greater for estimator 1.
However, their bias are the same. We can show that the conditional
variances are of the same order of magnitude. Therefore, thanks to
Var[m] = E[Var[m|D]] + Var[E[m|D]], the variance of estimator
2 is lower than that of estimator 1. The proofs are mainly done as
in the evaluation of errors in quadrature methods. The functions to
be integrated are assumed to have some degrees of smoothness, and
expansions are considered. All the calculations are done conditional
on the partition.

To illustrate, we apply the previous estimators to E[exp(−x2)]
when X is uniformly distributed over [0, 1]nx . Then the mean is
(
√
π erf(1)/2)k where erf stands for the usual error function. We

generated Np = 100 random partitions Dk, k = 1, . . . , Np, for
a given µ = 0.9 calculated from series of length 10000, so that
we can assume that the support is completely covered, or equiva-
lently that the dictionary size has reached its limit. Then for each
partition we generate Nr = 100 snaphshots of n = 10000 sam-
ples for which we evaluate the two estimators. Averaging over
the Nr snapshots allows us to have Np realizations of the esti-
mate of the conditional mean and of the conditional variance as
a function of n. Precisely, we calculate mn

i,x,k,l and mn
2,x,k,l for

k = 1, . . . , Np and l = 1, . . . , Nr . Then N−1
r

∑
lmn

n
1,x,k,l

(resp. mn
2,x,k,l) is an estimate of E[mn

1,x

∣∣Dk] (resp. E[mn
2,x

∣∣Dk]).
Likewise, N−1

r

∑
l(m

n
1,x,k,l −N−1

r

∑
lm

n
1,x,k,l)

2 is an estimate of
Var[mn

1,x

∣∣Dk] (the same holds true for mn
1,x as well). We plot some

results in Figure (2). The advantage of using the centroı̈ds instead
of the center is illustrated by the upper left plots and the lower right
plot. In the upper left plots, we clearly see that the conditional mean
has a worse dispersion for mnnx , which is the meaning of the order
of magnitude difference between the two estimator. This implies that
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Fig. 2. Illustrations of the statistics of the sparse estimate of the
mean. Two upper left plots: 100 realizations of the conditional mean
illustrating the one order of magnitude difference between the two
estimators. Upper right plot: the mean of the estimates are of the
same order. Lower left plots: the conditional variances are of the
same order. Lower right plot: for high n, the variance of the estimator
based on the k means is superior to the other. Note that lower plots
are log-log plots.

the variance of mn
1,x is bigger than the variance of mn

2,x, even if the
conditional variances are of the same order, as mentioned above.

3. APPLICATION TO HSIC

We now illustrate the application of the sparsification technique to
the estimation of a measure of independence proposed by Gretton
[6]. The measure is named HSIC for Hilbert-Schmidt Indepen-
dence Criterion. As developed in [5], it is possible to define the
covariance and cross-covariance of random variables taking values
in Hilbert spaces. Precisely, if we embed two random vectors x and
y defined on a common probability space into two different rkHs
Hx and Hy using respectively two kernels ku : Rnu × Rnu →
R, u = x, y, then the cross-covariance operator is defined as the
unique linear bounded operator Σyx : Hx −→ Hy such that〈
g
∣∣Σyxf〉Hy

= Cov [f(x), g(y)]. This operator is well-defined
provided E[kx(x, x)] < +∞ and E[ky(y, y)] < +∞. Then the
operator is known to be Hilbert-Schmidt, meaning that its Hilbert-
Schmidt norm defined as ‖Σyx‖2 :=

∑
i

∥∥Σyxϕi
∥∥2
Hy

is finite, for
any orthonormal basis {ϕi}i∈N.

A theorem proved by Gretton extends Rényi’s theorem stating
that independence is equivalent to Cov

[
f(x), g(y)] = 0 for all

continuous bounded functions f and g. Gretton’s theorem states
that if the kernel is universal (in the sense that the RKHS associ-
ated to it is dense in the set of continuous bounded functions), then
supf∈Ux,g∈Uy

〈
g
∣∣Σyxf〉Hy

= 0 is equivalent to independence be-
tween x and y. Here, U stands for the unit ball of H, the subset of
functions with norm less than 1. The magic with this result is that the
quantity involved in this result is nothing but the usual norm of the
covariance operator which can be efficiently estimated when dealing
with data. Furthermore, this norm is known to be less than or equal to
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the Hilbert-Schmidt norm. Therefore Gretton’s result remains valid
when dealing with the Hilbert-Schmidt norm, a quantity even easier
to estimate from data [7, 6]. Finally, there are well-known universal
kernels, such as the Gaussian and the exponential kernels.The cal-
culation of the estimate can be done in O(n2) steps for data length
n, a high complexity which can be lowered to a linear complexity
in n by using low-rank approximations of Gram matrices. However,
the complexity depends on the rank obtained which is often not very
small compared to n.

Here we adopt another strategy by giving a recursive implemen-
tation of HSIC, and then by applying to the recursive implementation
the coherence based sparsification technique. In the full recursive
implementation, the Gram and centering matrices are not explicitly
used. This lowers memory requirements and significantly reduces
the required number of floating-point operations. The complexity
remains however O(n2), but the gain in storage and number of op-
erations makes the implementation much more rapid than an imple-
mentation using matrices. Furthermore, applying jointly the sparsifi-
cation procedure allows to gain much more.

Given data xi, yi, for i = 1, . . . , n, empirical estimators of
‖ΣYX‖2 can be obtained using n × n Gram matrices Kn

x and Kn
y ,

whose (i, j)th entries are respectively kx(xi, xj) and ky(yi, yj).
Then the HSIC estimate is given by n−2Tr

(
Kn
xCnK

n
yCn

)
with

Cn := In − 11>/n, 1 is a vector of 1 of size n. Note that this
estimator is only asymptotically unbiased. An unbiased estimate can
be designed (see [14]), and the following development can be done
for the unbiased case but is not presented for the sake of simplicity.
Although it is possible to design a recursive algorithm based on the
previous form, the following alternative derivation has the advantage
of being able to work well with the sparsification technique intro-
duced in Section 2.

The required empirical estimates are the empirical mean ele-
ments in the rkHs and the cross-moment operator. We present them
jointly with the sparsification procedure. Suppose at time n the dic-
tionary isDn, and the number of samples already in cell Vα given by
πn(α). Then the estimators of the mean elements and the cross-
moment are respectively mn

x = n−1∑
α∈Dn

πn(α)k(., xα) and
Mn
yxf = n−1∑

α∈Dn
πn(α)

〈
f
∣∣k(., xα)

〉
k(., yα). This allows the

cross-covariance to be estimated as Cnyxf = Mn
yxf −

〈
f
∣∣mn

x

〉
mn
y .

Let s(n) be the size of the dictionary at time n. Define πn−1 to be
the vector with entries πn−1(α), α ∈ Dn−1. Let knx be the vector
with entries kx(xn, xα), α ∈ Dn−1. Let (A ◦ B)ij := AijBij In
the sequel, z = (x, y) and kz = kx ⊗ ky is the tensor product of the
kernels, and is the kernel of the tensor product between Hx and Hy
[15]. The recursive sparse form of HSIC is given by

‖Cnyx‖2=‖Mn
yx‖2 + ‖mn

x‖2‖mn
y‖2 − 2cnyx

‖Mn
yx‖2=

(n− 1)2

n2
‖Mn−1

yx ‖2 +
2

n2
π>n−1k

n
x ◦ kny +

‖kx‖2‖ky‖2

n2

‖mn
x‖2=

(n− 1)2

n2
‖mn−1

x ‖2 +
2

n2
π>n−1k

n
x +
‖kx‖2

n2

cnyx=
1

n3
π>n v

n
x ◦ vny with :

1. if Dn = Dn−1 ∪ {n} ⇐⇒ maxα∈Dn−1

∣∣kz(zn, zα)
∣∣ < µ:

vnx =

(
vn−1
x + knx

π>n−1k
n
x + ‖kx‖2

)
and πn =

(
πn−1

1

)
2. if Dn = Dn−1: a = arg maxα∈Dn−1

∣∣kxy(zα, zn)
∣∣,

vnx = vn−1
x + knx and πn = πn−1 + δaα
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Fig. 3. Sparse HSIC to assess independence between a 1d Gaussian
variable and a 1d Exponential random variable. Up Left and right:
Mean and log variance of the recursive algorithm function of sample
size n. Bottom Left: Mean size of the dictionary as a function of µ.
Bottom Right: Computation time as a function of the sample size
for assessing independence between 3d Gaussian vectors.

and likewise for the estimates indexed by y. In these expressions,
‖kx‖2 stands for kx(xn, xn) and likewise for y. In item 1 above,
if the coherence test is passed the dictionary is updated. Therefore
its dimension is increased by one unit, and the vector πn updated
accordingly. When the coherence test fails, the dictionary remains
as it is at time n − 1, the dimension of π is not increased, only the
components a corresponding to the index of the cell where xn falls
is increased by 1. Note that the coherence test is performed in the
tensor product spaceHx ⊗Hy .

Let us illustrate the behavior of the algorithm on a simula-
tion. We study the dependence between the components of a 2d
rotated vector. The first component of the initial vector is a stan-
dard Gaussian variable, the second component is a bilateral Expo-
nential variable with parameter 1. We evaluate HSIC and its sparse
version for µ = 0.8, 0.85, 0.9, 0.95. The kernel used is the Gaus-
sian exp(−‖z‖2/1.2). We calculate the result for 100 realizations
of 5000 samples each.The mean convergence and the variance over
time are plotted in Figure (3), top row. As µ approaches 1, the sparse
version approaches the full HSIC algorithm. Further, the error made
compared to HSIC is low, and the loss in variance is very low. This
is remarkable since for example µ = 0.95, the dictionary has a size
of only 140, compared to 5000 samples, which which is a significant
reduction in computational effort (see the left plot in the bottom row
in figure (3)). To illustrate the gain obtained in computation time,
we have tested independence between two correlated 3 dimensional
random vectors. The recorded time of computation as evaluated in
our implementation is plotted in the bottom right plot in figure (3)
as a function of the sample size for several values of µ. A seen, for
small values of µ, the behavior is almost linear in the sample size.
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