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ABSTRACT

An adaptive algorithm to estimate jointly unknown loca-
tion and scale parameters of a sequence of symmetrically
distributed independent and identically distributed random
variables using quantized measurements from a quantizer
with adjustable input gain and input offset is presented. The
asymptotic variance of estimation is obtained, simulations
under Cauchy and Gaussian distributions are presented to
validate the asymptotic results and they are compared to the
continuous optimal estimator performance.

Index Terms— Parameter estimation, quantization, adap-
tive algorithm.

1. INTRODUCTION

Sensor networks became an important domain of research re-
cently due to advances in sensor and communication technol-
ogy. Its potential applications include military sensing, traffic
surveillance, industrial automation, environmental monitor-
ing and many others [1].

With the increasing number of sensors in sensing systems,
constraints as bandwidth and complexity that were commonly
neglected might now be taken into account in the design of
the system. One simple way to treat these constraints is to
consider quantization of the sensor output measurements.

When considering the problem of optimal quantization
and reconstruction of the measurements, well known results
can be found in the literature [2]. However, in sensing sys-
tems the problem to be solved is normally the optimization
of the performance of estimation of a parameter from noisy
quantized measurements.

Main results on estimation from quantized measurements
can be found in [3], where the behavior of the Cramér–
Rao lower bound (CRB) on the variance of estimation of
a constant parameter based on uniformly quantized noisy
measurements was studied for different types of quantizer
input offset, it was shown that a good type of offset should be
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based on feedback from the quantizer output. An interesting
result was that in the binary measurement case with Gaussian
distributed noise, the optimal quantizer threshold should be
exactly placed at the parameter. This result motivated the
development of adaptive schemes in [4] and [5] for placing
the thresholds of a sensor network with binary quantizers
around the parameter to be estimated, thus enhancing the per-
formance of estimation based on the measurements from the
network. This was done by recursively placing the thresholds
of the sensor network at the last estimate of the parameter.

In this paper, an adaptive algorithm for estimating a con-
stant location parameter from multiple bit quantized noisy
measurements is proposed. As in practice the scale factor of
the noise is unknown, the proposed algorithm will jointly es-
timate the constant location parameter and the noise scale fac-
tor by using measurements from a quantizer with adjustable
input gain and input offset. For simplification purposes, the
noise will be considered to be symmetrically distributed. The
problem treated here can also be viewed as the estimation of
the parameters of a symmetrically distributed location-scale
model based on quantized measurements from an adjustable
quantizer.

Differently from [4] and [5], where complex maximum
likelihood estimators are used and only binary quantization is
considered, the algorithm proposed here has low complexity
and is designed for multibit quantization. Also, as a main
difference from [3], where location parameter estimation is
studied, the problem treated here includes the joint estimation
of the scale parameter.

After stating the problem and the adaptive algorithm
form, the estimation performance in terms of asymptotic es-
timation variance will be analyzed using adaptive algorithms
theory. The optimal quantizer and algorithm parameters will
be obtained and simulation results will be presented under
Gaussian and Cauchy noise with a comparison with the best
continuous measurement estimation performance.
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2. PROBLEM STATEMENT AND ADAPTIVE
ALGORITHM

A sequence of independent and identically distributed (i.i.d.)
random variables Yk with marginal cumulative distribution
function (CDF) F

(
y−x
δ

)
are quantized with an adjustable

quantizer resulting in a sequence of discrete observations ik,
where k is the sample index. The pair of parameters (x, δ)
is unknown and the objective is to estimate it based on the
quantized observations.

The adjustable quantizer Q is characterized by an ad-
justable sequence of input offsets bk, input gains 1

∆k
and

a static vector of thresholds τ defining its NI quantization
intervals

τ =
[
τ−NI2

· · · τ−1 τ0 τ1 · · · τNI
2

]
,

its input-output relation is given by

ik = Q

(
Yk − bk

∆k

)
= Q (Zk) =

=

{
i, for Zk ≥ τ0 and Zk ∈ [τi−1, τi) ,

i, for Zk < τ0 and Zk ∈ [τi, τi+1) .
(1)

The amplitude resolution of the quantizer can be enhanced
adaptively at each sample by using the last parameter esti-
mates

bk = X̂k−1, ∆k = cδ δ̂k−1. (2)

The constant cδ is a free parameter that can be used, e.g. in op-
timal uniform quantization, when the dynamical input range
of the quantizer is fixed. A choice for the estimation algo-
rithm that allows for the online update of the estimates is[

X̂k

δ̂k

]
=

[
X̂k−1

δ̂k−1

]
+

Γ

k
δ̂k−1

[
ηx (ik)
ηδ (ik)

]
(3)

where Γ is a 2 × 2 matrix of gains, ηx [i] and ηδ [i] are se-
quences of NI update coefficients

{
ηx
[
−NI2

]
. . . ηx

[
NI
2

]}
and

{
ηδ
[
−NI2

]
. . . ηδ

[
NI
2

]}
. The advantages of this algo-

rithm are its low complexity and the fact that it belongs to
a general class of adaptive algorithms for which the perfor-
mance was studied in [6].

Some assumptions on the noise distribution, quantizer
thresholds and update coefficients will now be stated for
simplification purposes:

• Yk has a locally Lipschitz continuous CDF and its
probability density function (PDF) 1

δ f
(
y−x
δ

)
is an

even function strictly decreasing w.r.t. |y − x|.

• The quantizer has symmetric thresholds τi = −τ−i
with τ0 = 0 and τNI

2

= +∞.

• The update coefficients have odd symmetry w.r.t. i
in the case of ηx, ηx [i] = −ηx [−i], and they have

1
cδ δ̂k−1

0

τ1

τ2

−τ1

−τ2

Yk

UPDATE

ik
Quantized
measurements

X̂k

δ̂k−1
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X̂k−1

−

Adjustable
Quantizer

Fig. 1. Scheme representing the adjustable quantizer. The
offset and gain are adjusted dynamically using the estimates
while the quantizer thresholds are fixed.

even symmetry in the case of ηδ , ηδ [i] = ηδ [−i].
The coefficients for positive i will be denoted in
vector form by ηx =

[
ηx [1] . . . ηx

[
NI
2

]]T
and

ηδ =
[
ηδ [1] . . . ηδ

[
NI
2

]]T
.

The estimation scheme is depicted in Fig. 1, where the
UPDATE block is the estimation algorithm.

3. ESTIMATION PERFORMANCE

The analysis of the algorithm will be done using the results
of general adaptive algorithms theory presented in [6, Chap.
3]. The estimation performance will be analyzed in terms
of the mean error and the asymptotic covariance matrix of
estimation error.

The estimator mean can be approximated using the fol-
lowing ordinary differential equation (ODE)

d

dt

[
x̂

δ̂

]
= Γh

(
x̂, δ̂
)
, (4)

the relation between continuous and discrete time is tk =
k∑
j=1

1
j and h is the following mean vector field:

h
(
x̂, δ̂
)

= E

 δ̂ηx

(
Q
(
y−x̂
cδ δ̂

))
δ̂ηδ

(
Q
(
y−x̂
cδ δ̂

))  = (5)

= δ̂


NI
2∑
i=1

ηx [i]
{
Fd

(
i, x̂, x, δ̂, δ

)
− Fd

(
−i, x̂, x, δ̂, δ

)}
NI
2∑
i=1

ηδ [i]
{
Fd

(
i, x̂, x, δ̂, δ

)
+ Fd

(
−i, x̂, x, δ̂, δ

)}
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where the expectation is w.r.t. F , the second equality comes
from the symmetry assumptions and Fd is

Fd =


F
(
τicδ δ̂
δ + x̂−x

δ

)
− F

(
τi−1cδ δ̂

δ + x̂−x
δ

)
if i ∈

{
1, · · · , NI2

}
,

F
(
τi+1cδ δ̂

δ + x̂−x
δ

)
− F

(
τicδ δ̂
δ + x̂−x

δ

)
if i ∈

{
−1, · · · ,−NI2

}
,

(6)
This result is valid under the condition that h is locally Lips-
chitz continuous, this condition is satisfied by the continuity
assumption on F .

The conditions on the mean convergence of the algorithm
are then conditions on the global asymptotic stability of the
point

(
x̂ = x, δ̂ = δ

)
. One necessary condition for asymp-

totic stability is that the true parameters must be an equilib-
rium point of the ODE, which means that h

(
x̂ = x, δ̂ = δ

)
must be the zero vector. From the symmetry assumptions, the
following is obtained

h
(
x̂ = x, δ̂ = δ

)
=

[
0

2ηTδ Fvecd

]
, (7)

where Fvecd is the vector
[
Fd [1] , · · · , Fd

[
NI
2

]]T
whose el-

ements Fd [i] = Fd (i, x, x, δ, δ) do not depend on the pa-
rameters. Then, the condition for the parameters to be the
equilibrium point is

ηTδ Fvecd = 0. (8)

Other conditions are necessary for the mean convergence of
the algorithm, these conditions can be found by the analysis of
the ODE using Lyapunov theory. The analysis of these other
conditions will not be detailed here and under the assumptions
already stated and the constraint on ηδ given in (8), it will be
assumed that the algorithm converges in the mean to the true
parameters.

Asymptotic results for adaptive algorithms with decreas-
ing gains presented in [6, pp. 110–113] can be applied to (3)
to get the asymptotic performance of the estimator. It can be
shown under all the assumptions above that the estimation er-
ror εk tends in distribution to a zero mean Gaussian random
variable as follows

k
1
2 εk  

k→∞
N (0,P) , (9)

where P is the covariance matrix given by the optimal gain
Γ?. The matrices P and Γ? are the following:

P =
δ2

2


ηTxFdηx(
ηTx f

(x)
d

)2 0

0
ηTδ Fdηδ(
ηTδ f

(δ)
d

)2

 , (10)

Γ? =
1

2

[ 1

ηTx f
(x)
d

0

0 1

ηTδ f
(δ)
d

]
, (11)

where Fd is a diagonal matrix Fd = diag [Fvecd ] and f
(x)
d =

[f
(x)
d [1] , · · · , f (x)

d

[
NI
2

]
]T , f (δ)

d = [f
(δ)
d [1] , · · · , f (δ)

d

[
NI
2

]
]T

are the derivatives in vector form of the quantizer output prob-
abilities Fd

(
i, x̂, x, δ̂, δ

)
when x̂ = x and δ̂ = δ:

f
(x)
d = f (τi)− f (τi−1) , (12)

f
(δ)
d = cδ [τif (τi)− τi−1f (τi−1)] . (13)

Minimization of the estimation variance can be done through
the minimization of the terms of the diagonal of P w.r.t. ηx
and ηδ . The minimization problems can be solved separately.
In the case of the optimization w.r.t. ηδ , the equilibrium con-
straint (8) has to be taken into account. The optimal ηx can be
found by using the Cauchy-Schwarz inequality, while the op-
timal ηδ are obtained by casting the constrained minimization
problem as a modified eigenvalue problem solved in [7].

The optimal coefficients are

ηx = F−1
d f

(x)
d (14)

ηδ = F−1
d f

(δ)
d − 1f

(δ)
d = F−1

d f
(δ)
d , (15)

where 1 is a squared matrix with ones. The second equality
comes from the fact that the sum of f

(δ)
d is zero.

Thus the optimal P and Γ? are

P = δ2Γ? =
δ2

2

 1

f
(x)T

d F−1
d f

(x)
d

0

0 1

f
(δ)T

d F−1
d f

(δ)
d

 . (16)

Note that the asymptotic variances are equal to the CRB
for estimating the parameters based on quantized measure-
ments, when the quantizer offset and gains are placed exactly
at x and cδδ. It is interesting that the optimal coefficients do
not depend on x or δ, they depend only on the normalized
CDF and PDF and on the quantizer parameters τ and cδ , thus
they can be implemented easily with a lookup table. Also,
notice that Γ? and P are diagonal matrices, indicating that
both algorithm and performance for estimating the location
and the scale parameters are decoupled. This is a behavior
that is also present in the standard continuous version of this
problem, where the CRB also decouples.

The asymptotic performance can still be optimized w.r.t.
τ and cδ . The optimization w.r.t. τ is a difficult multidimen-
sional minimization problem and it will not be treated here.
In what follows, it will be considered that the quantizer is
uniform with positive thresholds given by

τ+ =

[
τ1 = 1 · · · τNI

2 −1
=
NI
2
− 1 τNI

2

=∞
]T

.

(17)
Thus the only free parameter for optimization will be cδ .

4. SIMULATION

The algorithm will now be simulated to validate the theoreti-
cal results, the simulation will be focused on the performance
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Fig. 2. Normalized (multiplied by k) Cramér–Rao bound for continuous and quantized measurements and normalized mean
squared error (MSE (k)× k) for the adaptive algorithm, the numbers of quantization intervals are NI = {4, 8, 16, 32} and the
noise is Gaussian distributed in (a) and Cauchy distributed in (b). In both cases δ = 1, δ̂0 = 2, x = 0 and X̂0 = 1. The curves
with lower asymptotic values correspond to larger numbers of quantization intervals.

for the estimation of x. As it was mentioned, the quantizer
is uniform and cδ will be chosen so as to minimize the vari-
ance of estimation of x. As this is a scalar problem, it can be
solved by an exhaustive search using a fine grid. After find-
ing the optimal cδ , the other parameters of the algorithm Γ,
ηx and ηδ can be evaluated using the information from the
measurement distribution.

The Gaussian and Cauchy distributions will be used for
modeling the measurements. The Gaussian distribution can
be used to model a sequence of measurements of an unknown
constant (x), where the measurements are corrupted by ther-
mal noise with unknown scale factor, while the Cauchy distri-
bution can be used to model measurements corrupted by noise
with outliers. Their PDFs are given by

1

δ
fG

(
y − x
δ

)
=

1

δ
√
π
e−( y−xδ )

2

, (18)

1

δ
fC

(
y − x
δ

)
=

1

δπ
(

1 +
(
y−x
δ

)2) . (19)

The algorithm was simulated for 5× 105 blocks with 4× 104

samples each. The simulated mean squared error (MSE) for
the estimation of the location parameter was evaluated by cal-
culating the mean of the squared error for each sample. Other
simulation parameters are δ = 1, δ̂0 = 2, x = 0, X̂0 = 1 and
NI = {4, 8, 16, 32}. For comparison purposes, the CRB for
the estimation of x based on continuous measurements

CRB =
δ2

k

∫
R

(
df(y)
dy

)2

f (y)
dy


−1

(20)

was also evaluated for Gaussian and Cauchy distributions and
they are respectively given by CRBG = 1

2
δ2

k and CRBC =

2 δ
2

k . The results of the simulation are shown in Fig. 2, where
the MSE was normalized by k and the logarithm scale is used
in both axis for better visualization. It can be observed that af-
ter a time transient, the simulated performance becomes very
close to the asymptotic theoretical results, also it can be seen
that the gain in performance when increasingNI is very small
even for a small number of quantization intervals (NI = 8
or 16), and that the gap between the performance given by
NI = 32 and the continuous measurement bound is negligi-
ble.

5. CONCLUSIONS

In this article, an algorithm for estimating the location (x) and
scale (δ) parameters of a symmetrically distributed sequence
of i.i.d. variables based on quantized measurements from a
quantizer with adjustable input offset and gains was proposed.
The algorithm was chosen to be a low complexity adaptive al-
gorithm for which theoretical results of its performance could
be obtained in terms of its mean error and asymptotic error
covariance. It was shown that the asymptotic variance of
estimation was equal to the CRB for measurements from a
static quantizer with input offset and gains given by x and cδδ
and this was verified through simulation using Gaussian and
Cauchy distributions for the measurements. It was observed
that with only a few quantization intervals (NI = 16 and 32)
the asymptotic estimation MSE is very close to the continuous
measurement CRB. This indicates that it is not necessary to
use high resolution quantizers when a large block of samples
is used.

When the distribution of the variables is characterized
by location, scale and shape parameters (e.g. the general-
ized Gaussian distribution), a possible extension of this work
would be to estimate jointly the additional shape parameter.
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