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ABSTRACT

This paper addresses the problem of mobile device localiza-
tion in wireless sensor networks. The mobile is assumed to
receive the signals transmitted by WiFi access points. The lo-
calization procedure is performed online (i.e. using the obser-
vations acquired by the mobile) and relies on the estimation
of the propagation maps of the signal associated with each ac-
cess point. This intermediate estimation step uses a new on-
line Expectation Maximization based algorithm and Sequen-
tial Monte Carlo methods.

Index Terms— Simultaneous localization and mapping,
Sequential Monte Carlo methods, WiFi signal.

1. INTRODUCTION

The simultaneous localization and mapping (SLAM) problem
arises when a mobile (e.g. a robot or a human being equipped
with sensors) evolves in an unknown environment and seeks
to localize itself and to build a map of this environment. In
this paper, the environment is assumed to be made of WiFi
access points (AP) and the mobile localization is performed
using the power of the signals transmitted by the AP. An im-
portant step to localize the mobile is to obtain accurate esti-
mations of the propagation maps associated to each AP.

This localization problem in wireless sensor networks has
been addressed using several methods to represent the propa-
gation maps. In [1], they are modeled deterministically using
some prior information about the environment (e.g. the po-
sition of walls). In [2, 3], a preliminary calibrating phase is
performed: the power of signals transmitted by the AP is mea-
sured in previously determined positions in the environment.
Using these accurate measurements, the power for each po-
sition in the map can be estimated using different techniques
(see e.g. [4] for a method based on Gaussian processes). All
these methods provide a propagation map for each AP based
on a prior knowledge on the environment but do not allow any
change in the representation of the WiFi signal. If the prop-
agation is modified due to a change in the localization of the
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obstacles, the estimated maps are not changed to take this into
account. Therefore, the localization procedure is made using
a wrong representation of the environment which leads to a
degeneration of its performance.

In this paper, the maps are made of an average propaga-
tion model, based on a physical representation of wave prop-
agation, and an additive term which corresponds to pertur-
bations not taken into account in the average model. These
propagation maps are estimated online, with the observations
received by the mobile. Therefore, since any change in the
environment impacts the observations, the estimation proce-
dure is adapted accordingly. Simultaneously, the observations
received by the mobile are used to estimate its localization.
We present here a procedure based on the algorithm intro-
duced in [5, 6], where the estimations are performed using Se-
quential Monte Carlo methods and a new online Expectation-
Maximization (EM) technique.

The organization of the paper is as follows. The statistical
model is outlined in Section 2. In Section 3, the online EM
based estimation procedure is presented and numerical results
are provided in Section 4.

2. MODEL

The mobile is assumed to evolve in a 2-dimensional finite grid
C and its position {Xk}k≥0 is a Markov chain with transition
matrix given, for all (x, x′) ∈ C2, by:

qx,x′ ∝ e−‖x−x
′‖2/a , (1)

where a is a known constant and where ‖ · ‖ is the usual eu-
clidean norm in R2. The associated inner product is denoted
by 〈·, ·〉. The initial distribution of {Xk}k≥0 is the Dirac mass
δx0 for an unknown x0 ∈ C. In the sequel, for any matrix
A ∈ RB×|C|, we write Aj for the vector {Aj,x}x∈C and A2

j

for the vector {A2
j,x}x∈C .

At each time step k ≥ 1, the mobile receives the observa-
tion Yk ∈ RB , where B is the number of AP in the environ-
ment. For any k ≥ 1 and any j ∈ {1, . . . , B}, the observation
associated to the j-th AP at time k, Yk,j , is given by

Yk,j = µ?j,Xk
+ δ?j,Xk

+ εk,j , (2)
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where:

- µ?j,x is the average term and is modeled using the Friis
transmission equation, see [7]: for any j ∈ {1, . . . , B} and
any x ∈ C,

µ?j,x = c?j + d?j log ‖x−Oj‖ , (3)

where Oj is the known position of the j-th AP and where
c?j and d?j are real numbers.

- The additive term δ?j,x represents the perturbation not taken
into account in the Friis equation. It is assumed that
{δ?j }Bj=1 are embedded with the prior distribution π given,
for any δ ∈ RB×|C|, by

π(δ) ∝ exp

−1

2

B∑
j=1

δTj Σ−1j δj

 , (4)

where the covariance matrices Σj are assumed to be known
and where, for any matrix A, AT denotes the transpose of
A.

- {εk}k≥0 is a sequence of i.i.d Gaussian random vectors,
independent from {Xk}k≥0, with mean 0 and covariance
matrix Σ = σ?,2IB (IB is the identity matrix of size B ×
B).

The localization of the mobile relies on the estimation of θ? =
(c?, d?, δ?, σ?,2), where c? = {c?j}Bj=1, d? = {d?j}Bj=1 and
δ? = {δ?j }Bj=1. We denote by gθ(x, Yk) the probability den-
sity of the conditional distribution of Yk given Xk = x when
the parameter value is θ.

3. ESTIMATION PROCEDURE

Let n be a positive integer. Define the maximum a posteriori
estimator of θ? based on the observations Y1:n as one maxi-
mizer of the function:

θ 7→ n−1 [logLθ(Y1:n) + log π(δ)] , (5)

where Lθ(Y1:n) is the likelihood of the observations (i.e. the
joint probability density of Y1:n) when the parameter value
is θ. Since the function defined by (5) cannot be maximized
explicitly, the estimation is made using an online EM based
algorithm.

3.1. Batch EM algorithm

The EM algorithm (see [8]) is an iterative algorithm which
produces parameter estimates {θp}p≥0 using a fixed set of
observations Y1:n. An EM based algorithm can be used to
maximize (5). Each iteration of this algorithm is decomposed
into two steps:

1) The E-step computes the conditional expectation

Qθp(Y1:n; θ) = Eθp
[

1

n
log pθ(X1:n, Y1:n)

∣∣∣∣Y1:n] , (6)

where pθ(X1:n, Y1:n) is the complete-data likelihood and
where Eθp [·|Y1:n] is the conditional expectation given
Y1:n when the parameter value is θp.

2) The M-step defines the new value θp+1 as one maximizer
of θ 7→ Qθp(Y1:n; θ) + n−1 log π(δ).

Define, for any (x, y) ∈ C × RB and any j ∈ {1, . . . , B},

s1(x) = {1x′(x)}x′∈C , (7)
s2,j(x, y) = {1x′(x)yj}x′∈C , (8)

s3,j(y) = y2j . (9)

Using the model defined in Section 2, the intermediate quan-
tity computed in the E-step can be written, up to an additive
constant (since the parameter a is known), as:

Qθp(Y1:n; θ) =
1

2σ2

B∑
j=1

〈
Sn1 (θp, Y1:n), F 2

j

〉
− B

2
log σ2

− 1

2σ2

B∑
j=1

{
Sn3,j(θp, Y1:n)− 2

〈
Sn2,j(θp, Y1:n), Fj

〉}
,

(10)

where, for any j ∈ {1, . . . , B},

Fj = µj + δj (11)

and

Sn1 (θp, Y1:n) =
1

n
Eθp

[
n∑
k=1

s1(Xk)

∣∣∣∣∣Y1:n
]
, (12)

Sn2,j(θp, Y1:n) =
1

n
Eθp

[
n∑
k=1

s2,j(Xk, Yk)

∣∣∣∣∣Y1:n
]
, (13)

Sn3,j(θp, Y1:n) =
1

n

n∑
k=1

s3,j(Yk) . (14)

The function θ 7→ Qθp(Y1:n; θ) + n−1 log π(δ) can be maxi-
mized explicitly and we write

θp+1 = θ̄(Sn(θp, Y1:n)) , (15)

where Sn =
(
Sn1 , {Sn2,j}Bj=1, {Sn3,j}Bj=1

)
. A detailed expres-

sion of θ̄(Sn(θp, Y1:n)) can be found in [9].
This algorithm provides a way to estimate θ? with a fixed

set of observations. Nevertheless, in our localization frame-
work, we are interested in an online estimation procedure
which does not store the data and produces new estimates
each time new observations are available.
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3.2. Block Online EM algorithm

Online EM algorithms have recently been proposed to solve
maximum likelihood estimation in hidden Markov models,
see [5, 6, 10, 11, 12, 13]. We use the Block Online EM
(BOEM) algorithm introduced in [5] and further developed in
[6]. The BOEM algorithm allows to update online the estima-
tion of the propagation maps at previously defined time steps.
Define, for any p ≥ 0, Tp =

∑p
i=1 τi and Y p = YTp+1:Tp+1 ,

where {τp}p≥1 is a sequence of positive integers. For each
block of observations Y p, the BOEM algorithm computes
the sufficient statistics S

τp+1

1 (θp,Y p), S
τp+1

2,j (θp,Y p) and
S
τp+1

3,j (θp,Y p) using the value θp of the parameter and the
observations Y p. The new estimate θp+1 is computed at the
end of the block Y p by

θp+1 = θ̄(Sτp+1(θp,Y p)) . (16)

The sufficient statistics S
τp+1

1 (θp,Y p), S
τp+1

2,j (θp,Y p) and
S
τp+1

3,j (θp,Y p) are all of the form (dropping the dependence
on θp)

S(Y p) =
1

τp+1
E

[
τp+1∑
k=1

s(XTp+k, YTp+k)

∣∣∣∣∣Y p

]
. (17)

Following [12, 14] this can be written

S(Y p) = E
[
ρpτp+1

(XTp+1
)
∣∣∣Y p

]
, (18)

where ρp0(x) = 0 and for t ≥ 1,

ρpt (XTp+t) =
1

t
E

[
t∑

k=1

s(XTp+k, YTp+k)

∣∣∣∣∣Y p, XTp+t

]
.

(19)
This intermediate quantity ρpt can be computed recursively by

ρpt (x) =
1

t
s(x, YTp+t) +

t− 1

t

∫
Bpt (x, dx′)ρpt−1(x′) ,

(20)
where Bpt (x, dx′) is the backward Markov transition kernel
given by

Bpt (x, dx′) ∝ qx′,x φpt−1(dx′) (21)

and where φpt is the filtering distribution at time t on the
block Y p (i.e. the distribution of XTp+t given YTp+1:Tp+t).
In our context, (18) and (20) cannot be computed explicitly
and are approximated using Sequential Monte Carlo methods.
These methods produce weighted samples {(ξp,it , ωp,it )}Np+1

i=1

for 0 ≤ t ≤ τp+1 combining sequential importance sampling
and resampling steps (see e.g. [15, 16]). At each time step,
the filtering distribution φpt is approximated by φ̂pt where

φ̂pt (dx) =

Np+1∑
i=1

ωp,it δξp,it
(dx) . (22)

Replacing φpt in the recursion (18) and (20) by φ̂pt gives the
approximation ρp,it of ρpt (ξ

p,i
t ):

ρp,it =
1

t
s(ξp,it , YTp+t) +

t− 1

t

∑Np+1

`=1 ωp,`t−1qξp,`t−1,ξ
p,i
t
ρp,`t−1∑Np+1

`=1 ωp,`t−1qξp,`t−1,ξ
p,i
t

.

(23)
Line 16 of Algorithm 1 performs this intermediate step for
each statistic. Then, at the end of the block, the approximation
Ŝ(Y p) of S(Y p) is obtained by using (18):

Ŝ(Y p) =

Np+1∑
i=1

ωp,iτp+1
ρp,iτp+1

. (24)

At each time step, the weighted samples are also used to esti-
mate the mobile localization (line 13 of Algorithm 1).

Algorithm 1 SLAM indoor
Require: θ0, {τk}k≥1, {Yt}t≥0.

1: Sample {ξ0,i0 }
N1
i=1 independently and uniformly in C .

2: Set ω0,i
0 = N−11 for all i ∈ {1, . . . , N1}.

3: for all p ≥ 0 do
4: Set ρp,i0 = 0 for each statistic and i ∈ {1, . . . , Np+1}.
5: for t = 1 to τp+1 do
6: Selection and propagation steps.
7: for i = 1 to Np+1 do
8: Set I = j with probability ωp,jt−1.
9: Set ξp,it = x with probability qξp,It−1,x

.

10: Set ωp,it ∝ gθp−1
(ξp,it , YTp+t).

11: end for
12: Localization.
13: Set î = Argmax

i∈{1,...,Np+1}
ωp,it and X̂Tp+t = ξp,̂it .

14: Forward computation of the intermediate quantity.
15: for i = 1 to Np+1 do
16: Update ρp,it for each statistic using (23).
17: end for
18: end for
19: Map estimation.
20: Update the estimation of each statistic using (24).
21: Compute θp+1 using θ̄.
22: for i = 1 to Np+1 do
23: Set ωp+1,i

0 = ωp,iτp+1
and ξp+1,i

0 = ξp,iτp+1
.

24: end for
25: end for

4. NUMERICAL EXPERIMENTS

This section provides numerical experiments to illustrate the
performance of the BOEM algorithm. The state-space is
given by C = {0, . . . , 25} × {0, . . . , 25} and B = 12 AP
are displayed in the environment. For all j ∈ {1, . . . , B},
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set c?j = −26, d?j = −17.5 and Σj(x, x
′) = v1 · exp(−|x −

x′|2/v2) with v1 = 10 and v2 = 18. Finally, we set σ?,2 = 25
and a = 6.

The initial estimates are δ0 = 0, σ2
0 = 30 and, for all

j ∈ {1, . . . , B}, c0,j = −10 and d0,j = −30.
The number of particles on the block p is given by Np =

25 + p and the block sizes are given by τp = 25p+ 100.

On each block p, the estimation error is set as the mean
normalized L1 error:

εp =
1

B|C|

B∑
j=1

∑
x∈C

∣∣F pj,x − F ?j,x∣∣ , (25)

where F pj is the estimated map of the j-th AP on the current
block, see (11). On each block, the localization error is set
as the empirical 0.8-quantile of the distance between the true
localizations and the estimated positions. Figure 1 displays
the error ε and Figure 2 the localization error as functions
of the number of blocks over 50 independent Monte Carlo
runs. Both errors decrease as the number of blocks increases.
In order to assess the performance of the algorithm, we also
give in Figure 2 the optimal localization error. This error is
obtained by applying Algorithm 1 using the true values for
each map (i.e. without performing the estimation of the maps
from line 14 to 21 and using F pj,x = F ?j,x on each block).
After 60 blocks (about 50.000 observations), the localization
error almost reaches the optimal performance.
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Fig. 1. Map estimation error. Median (bold line) and lower
and upper quartiles (dashed lines) over 50 independent Monte
Carlo runs for the error ε.

Finally, Figure 3 provides the estimation of σ? as a func-
tion of the number of blocks which almost converges to the
true value after about 60 blocks.

5. RELATION TO PRIOR WORK

The work presented in this paper provides a new algorithm
to perform online simultaneous localization and mapping us-
ing WiFi signals. Contrary to previous techniques which use
previously calibrated maps (see [2, 3]) or deterministically
built maps (see [1]), this algorithm estimates online the prop-
agation maps. Moreover, we provide numerical experiments
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Fig. 2. Localization error. Median (stars) and lower and upper
quartiles (balls) over 50 independent Monte Carlo runs. Me-
dian (bold line) and lower and upper quartiles (dashed lines)
are also displayed for the optimal localization (with known
maps).
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Fig. 3. Estimation of σ?. Median (bold line) and lower
and upper quartiles (dashed line) over 50 independent Monte
Carlo runs. The true value is σ? = 5.

showing that the stabilization procedure introduced in [9] is
not necessary with smaller maps containing few AP.
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