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ABSTRACT

For compressive sensing, we derive achievable performance

guarantees for recovering partial support sets of sparse vec-

tors. The guarantees are determined in terms of the fraction of

signal power to be detected and the measurement rate, defined

as a relation between the dimensions of the measurement ma-

trix. Based on this result we derive a tradeoff between the

measurement rate and the mean square error, and illustrate it

by a numerical example.

Index Terms— Compressive sensing, sparse signal, sup-

port recovery, MSE, performance tradeoff.

1. INTRODUCTION

Sparse signal recovery through compressive sensing is a

growing field within signal processing with a wide range of

applications [1, 2, 3, 4, 5, 6]. A sparse signal can be described

as a vector with a large number of zero components. The ‘sup-

port set’ of the signal denotes the unknown set of indices of

its nonzero components. This set is a central component for

inference of sparse signals from an underdetermined relation

of linear measurements in noise.

There exist tradeoffs between the dimensions of the sparse

signal vector and the measurement vector for recovering the

support set with a given sparsity level [1, 4]. The asymp-

totic tradeoffs for exact support set recovery in a noisy set-

ting were studied in [7, 8, 9]. Further, asymptotically achiev-

able Cramér-Rao bounds on the mean-square estimation error

(MSE) were given in [10, 11, 12].

In this paper, we adopt the approach of [7, 8, 9] and de-

rive achievable performance guarantees for partial support set

recovery. We use the result to derive an achievable tradeoff

between the mean square error and the measurement rate, de-

fined as a relation between the dimensions of the measure-

ment matrix. The tradeoff is illustrated by a numerical exam-

ple, showing a significant potential reduction of the measure-

ment rate at minimal increase of MSE.

Part of this work has been performed in the framework of Network of

Excellence ACROPOLIS, which is partly funded by the European Union un-

der its FP7 ICT Objective 1.1 – The Network of the Future.

Notation: Upper-case letters denote random variables or

vectors and lower-case denote their realizations, e.g. x ∼ X .

The statistical expectation is denoted by E {·}. Vectors are

represented with bold face letters x. The ith entry of x is

denoted by xi. The operators ‖·‖ and tr{·} denote the Frobe-

nius norm of a vector/matrix and the trace of a square matrix,

respectively. x ∈ R
n is k-sparse if only k ≪ n of its entries

are non-zero. Here, sets are collections of unique objects and

are denoted using calligraphic letters, e.g. S or S. Given a

vector x and a set S = {s1, . . . , s|S|}, xS is the subvector

(xs1 , . . . , xs|S|
). O(·) denotes the standard big-O notation.

2. PROBLEM FORMULATION

LetX ∈ R
n be a k-sparse random vector and let w ∈ R

k be

a deterministic but unknown vector with the non-zero entries

of X sorted in decreasing order of magnitude. The positions

of these entries are the only source of randomness of X and

are selected as follows. Let S = {S1, . . . , Sk} be chosen uni-

formly at random over all size-k subsets of {1, . . . , n}, then

Xi =

{

wj if i = Sj ,

0 if i /∈ {S1, . . . , Sk}

for i = {1, . . . , n}. Clearly, the size of the support set of X

equals k for all possible S . Consider the length-m vector of

real-valued measurements

Y = φX +Z

where φ ∈ R
m×n is a measurement matrix with average

power Pφ = 1
nm ‖φ‖2 and Z ∈ R

m is a noise vector with

each of its entries independently and identically distributed

(i.i.d.) according a Gaussian distribution N (0, Pz).
We consider the problem of estimating X for fixed k and

varying m and n. In particular, we study the number of mea-

surements m that suffices asymptotically to ensure estimation

of X with a certain MSE as the size n of X increases. Our

approach is to divide the problem into two parts: first, partial

support recovery and then, signal estimation.

The first part consists of determining a relationship be-

tween the number of measurements m and the length n of
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the vector X such that it is possible to recover a part of its

support set that encompasses at least a fraction γ of the total

power. A formal statement of the first part of the problem is

the following.

For any γ ∈ (0, 1], a γ-support set of X identifies a (pos-

sibly non-unique) smallest subset of the entries ofX that con-

tain at least a fraction γ of the power of X . Let ℓ be the size

of the γ-support set. Note that ℓ depends on both γ andw but

is, by definition, equal for all γ-support sets of X . Given the

vector of measurements Y , the γ-support recovery map

dγ : Rm 7→ {1, . . . , n}ℓ̂

produces an estimate Ŝγ of a γ-support set of X . The size ℓ̂

of Ŝγ is itself an estimate of ℓ. Let Sγ denote the set of all

γ-support sets of X . For a given w and measurement matrix

φ we define the average error probability as

Pe(w,φ, γ) , Pr(dγ(Y ) /∈ Sγ).

The average is over S (i.e. the positions of the non-zero en-

tries ofX) and the noiseZ. We want to determine a relation-

ship between the number of measurements m and the length n
of the vectorX such that it is possible to recover a γ-support

set with arbitrarily low average error probability.

In the second part of our study, we quantify the achievable

MSE given that the support recovery map produces a correct

estimate of a γ-support set. Namely, for a given realization x

ofX and conditioned on Ŝγ ∈ Sγ , we establish an achievable

MSE performance in estimating x.

3. MAIN RESULTS

Consider w,X , and Y as introduced in Section 2. Let PΦ >
0 be the largest allowed measurement matrix average power.

Proposition 1. If the number of measurements m grows with

the length n of the vectorX so that

lim
n→∞

m

log n
> R⋆(w, γ) (1)

where

R⋆(w, γ) ,











min
i∈{1,...,ℓ}

1

2i
log











PΦ

k
∑

j=ℓ−i+1

w2
j + Pz

(1− γ) ‖w‖2 PΦ + Pz





















−1

,

then there exists a sequence of measurement matrices φ(n)

with Pφ(n) ≤ PΦ and support recovery maps that detect a γ-

support set Sγ with arbitrarily low average error probability.

Thus, to detect a γ-support set reliably it suffices to let

the number of measurements m grow with n so that m
logn >

R⋆(w, γ). Therefore we will refer to the ratio R , m
logn as

the measurement rate.

We make the following two observations. First, note that

some choices of γ are better than other ones. For example, let

w ∈ R
2 with w2

1 = 0.7, w2
2 = 0.3. For both γ1 = 0.4 and

γ2 = 0.6 the γi-support set is just the position of w1 in X .

However, R⋆(w, γ1) > R⋆(w, γ2). In fact it is easy to show

that for a given ℓ, R⋆(w, γ) is maximized by choosing γ to

be equal to the fraction of the power of the ℓ largest entries of

w.

Second, it is sometimes simpler to detect larger γ-support

sets. For example, let w ∈ R
3 with w2

1 = w2
2 = 0.45, w2

3 =
0.1. Let γ1 = 0.4 and γ2 = 0.8. The size of the γ1 and γ2-

support sets are 1 and 2, respectively. However, R⋆(w, γ1) >
R⋆(w, γ2). Thus, the choice of γ should be influenced by our

prior knowledge of w, if any.

Now, let x be a realization of X and let Ŝγ be an esti-

mate of a γ-support set of x. If Ŝγ is a correct estimate of a

γ-support set, then we can estimate x with MSE that only de-

pends on x through its non-zero entries, i.e. through w, and

Ŝγ . The MSE is characterized as follows.

Proposition 2. Conditioned on Ŝγ ∈ Sγ , it is possible to

estimate x with MSE given by

mse
⋆(w, Ŝγ) = ‖wŜc

γ
‖2 +O(1/m) (2)

where wŜc
γ

is the subvector of w that contains the non-zero

entries of x not included in Ŝγ .

Consider the pair
(

R⋆(w, γ),mse⋆(w, Ŝγ)
)

. The con-

catenation of the two propositions implies that it is possible

to estimate x with MSE arbitrarily close to mse⋆(w, Ŝγ) as

long as the measurement rate is above R⋆(w, γ). We empha-

size that the MSE is an average performance characterization;

that is, there is no guarantee that the estimation error for a par-

ticular realization of Y will be below the given MSE value.

In Fig. 1 we show a typical example of pairs (R⋆,mse⋆).
This corresponds to a random realization of w with k = 10
and i.i.d. wj ∼ N (0, 1/

√
k). The MSE is normalized by

‖w‖2 so that the values range from 0 to 1. The solid line

represents the boundary of the region of pairs (R⋆,mse⋆)
achievable by combining Propositions 1 and 2. All pairs

above this curve are asymptotically achievable by selecting γ
appropriately. However, in practice one usually does not have

any knowledge of the structure of w and thus γ needs to be

chosen arbitrarily. To illustrate the performance in this case,

we have included the (R⋆,mse⋆) pair for several arbitrary

choices of γ.

The figure also shows that it is often possible to reduce

drastically the measurement rate at a very small loss in terms

of MSE. For example, a reduction of the measurement rate

from R ≈ 38 (corresponding to perfect recovery [9], i.e. γ =
1) to R ≈ 7 only incurs in a relative MSE of 0.0028 if γ is

chosen carefully. Even a blind choice of γ = 0.99 yields a

reduction to R ≈ 12 for the same increase in relative MSE.
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Fig. 1. Measurement rate vs. normalized MSE: all pairs

(R,mse) above the solid line are asymptotically achievable.

4. PROOFS

In this section we provide the proofs to Propositions 1 and 2.

4.1. Partial Support Recovery

Proposition 1 is based on random coding arguments and fol-

lows the lines of [9, Theorem 1]. However, as opposed to

[9], we do not assume any knowledge on the size of the sup-

port set and we only detect part of it. We circumvent the first

difference by applying the support recovery map for increas-

ingly larger support set sizes until we obtain an estimate of a

γ-support set. To circumvent the second difference we define

the recovery threshold based on γ. This adds a difficulty due

to the non-uniqueness of the γ-support for some values of γ.

Proof of Proposition 1. We sketch only the basic differences

to [9, Theorem 1]. Let γ ∈ (0, 1] and fix ǫ > 0 and ζ > 0.

Consider the expectation

Pr(E) , EΦ

{

Pe(w,Φ(n), γ)
}

taken over the random ensemble of measurement matrices

φ(n) ∼ Φ
(n) with i.i.d. Gaussian entries φ

(n)
ij ∼ N (0, P̃Φ)

with P̃Φ = PΦ − ǫ, and using the following variation of the

support recovery map described in [9]. Given the vector of

measurements Y :

1.- Form an estimate of ‖w‖ (note that ‖w‖ = ‖X‖) as

Ŵ =

√

√

√

√

∣

∣

∣

1
m ‖Y ‖2 − Pz

∣

∣

∣

P̃Φ

.

2.- For l = 1, . . . , n, in increasing order:

(a) Consider the (non-unique) sets of points in Bl(Ŵ )
(l-dimensional hypersphere of radius Ŵ ) such that

l-dimensional hyperspheres of radius ζ
2 centered on

the points cover the whole hypersphere Bl(Ŵ ). Let

Ql(Ŵ , ζ) be one such set that has the smallest number

of points.

(b) Find a set T = {t1, . . . , tl} ⊆ {1, . . . , n} such that

1

m

∥

∥

∥

∥

∥

Y −
l
∑

i=1

ŴiΦ
(n)
ti

∥

∥

∥

∥

∥

2

≤ (1− γ)Ŵ 2P̃Φ + ǫ2P̃Φ + Pz

(3)

for some Ŵ = [Ŵ1, . . . , Ŵl]
T ∈ Ql(Ŵ , ζ), where

Φ
(n)
ti is the column of Φ(n) in position ti. The process

stops when the first set that satisfies (3) is found. This

set is the desired estimate.

We now show that this random choice of measurement matri-

ces and support recovery map has Pr(E) → 0 as m → ∞ if

(1) is satisfied. To see this, consider the event

ET ,

{

∃Ŵ ∈ Ql(Ŵ , ζ) s.t. (3) holds
}

given a set T . Let Ec
T be the complement of ET . We have that

Pr(E) ≤
ℓ
∑

i=1

Pr

(

⋃

T :|T |=i
T /∈Sγ

ET
)

+ Pr

(

⋂

T ∈Sγ

Ec
T

)

The first sum upper bounds the probability that any set that

is not a γ-support set satisfies (3). The second term upper

bounds the probability that none of the γ-support sets satisfies

(3). Following similar steps as in [9] we can show that both

terms tend to 0 with increasing n if (1) is satisfied. A conse-

quence of this is that there must exist a sequence φ(n) of de-

terministic measurement matrices with Pe(w,φ(n), γ) → 0
under the same conditions, as we wanted to prove.

4.2. MSE Performance

We now study the performance in terms of the MSE of an

estimator that uses an estimate of a γ-support set. Our anal-

ysis considers the MSE averaged over the random choice of

measurement matrices introduced in Section 4.1.

Proof of Proposition 2. Let x be a realization of X and let

Ŝγ be the output of the support recovery map. In addition, let

Ŝc
γ be the undetected part of the support set of x. We start by

introducing the event

Eid ,

{∥

∥

∥

∥

1

m
Φ

T
Ŝγ
ΦŜγ

− PΦIℓ

∥

∥

∥

∥

> δ

}

defined for arbitrary δ > 0. Note that, for any such δ, by the

vector Chebyshev inequality we have Pr(Eid) ≤ O(1/m).
Given the output Ŝγ of the support recovery map, we con-

struct the following estimate X̂ of x. If the event Eid happens

then X̂ = 0. Otherwise set

X̂i =

{

X̂Ŝγ ,i
for i ∈ Ŝγ

0 for i /∈ Ŝγ .

for i ∈ {1, . . . , n} and some estimator X̂ Ŝγ
.
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Conditioned on Ŝγ ∈ Sγ , the MSE of X̂ averaged over

the ensemble of measurement matrices is

mse(x, Ŝγ) , EY ,Φ

{

‖x− X̂‖2
}

= EY ,Φ

{

‖xŜγ
− X̂ Ŝγ

‖2
}

+ ‖xŜc
γ
‖2. (4)

Let mse(xŜγ
) denote the first term in (4). We have that

mse(xŜγ
)=mse(xŜγ

|Eid) Pr(Eid)+mse(xŜγ
|Ec

id) Pr(Ec
id)

≤ ‖xŜγ
‖2O(1/m) + mse(xŜγ

|Ec
id) (5)

To analyse the second term in (5) we make explicit that Φ has

two independently generated parts, one part that contains the

columns corresponding to Ŝγ , namely ΦŜγ
, and another part

that contains the rest of the columns. In addition, note that

the MSE only depends on the latter part through the columns

corresponding to Ŝc
γ , i.e. ΦŜc

γ
. Using this we rewrite

mse(xŜγ
|Ec

id) = EΦŜγ
|Ec

id

{

mse(xŜγ
|ΦŜγ

= φŜγ
)
}

(6)

where

mse(xŜγ
|ΦŜγ

=φŜγ
) , EΦŜc

γ

{

EY |Φ

{

‖xŜγ
−X̂ Ŝγ

‖2
}}

Note that mse(xŜγ
|ΦŜγ

= φŜγ
) is conditionally indepen-

dent of Ec
id given φŜγ

. It corresponds to the MSE incurred

in obtaining X̂ Ŝγ
when both the noise and the residual terms

(i.e. those in Ŝγ) are random processes. That is, for

Y = φŜγ
xŜγ

+
∑

i∈Ŝc
γ

xiΦi +Z.

The covariance matrix of the residual terms is given by

E











∑

i∈Ŝc
γ

∑

j∈Ŝc
γ

xixjΦiΦ
T
j











= PΦ‖xŜc
γ
‖2Im.

Thus, the covariance matrix of the residual terms plus noise is

C = κIm with κ , Pz + PΦ‖xŜc
γ
‖2. The estimation of xŜγ

corresponds to a linear estimation problem in Gaussian noise.

For the class of unbiased estimators the MSE satisfies:

mse(xŜγ
|ΦŜγ

= φŜγ
) = κ tr{(φT

Ŝγ
φŜγ

)−1}

which holds when X̂ Ŝγ
= (φT

Ŝγ
φŜγ

)−1φT
Ŝγ
Y . Thus, for this

choice of estimate

mse(xŜγ
|Ec

id) = κEΦŜγ
|Ec

id

{

tr{(ΦT
Ŝγ

ΦŜγ
)−1}

}

.

Conditioned on Ec
id, for any φŜγ

we can write

(φT
Ŝγ
φŜγ

)−1 =
1

m
(
1

m
φT

Ŝγ
φŜγ

)−1

=
1

mPΦ
(Iℓ +ψ)

−1

for some ψ ∈ R
ℓ×ℓ with ‖ψ‖ ≤ δPΦ , δ′, and use the

Taylor expansion of the matrix inverse to write

tr{(φT
Ŝγ
φŜγ

)−1} =
1

mPΦ
tr

{(

Iℓ +

∞
∑

i=1

(−ψ)i
)}

≤ 1

mPΦ

(

ℓ+

∞
∑

i=1

√
ℓ ‖ψ‖i

)

(7)

≤ ℓ

mPΦ

(

1 +
1√
ℓ

δ′

1− δ′

)

. (8)

To obtain (7) we have used the bounds tr{ψ} ≤
√
ℓ ‖ψ‖,

which is easily proved using the Cauchy-Schwartz inequality,

and
∥

∥ψi
∥

∥ ≤ ‖ψ‖i for i ∈ N. To obtain (8) we have used

that ‖ψ‖ ≤ δ′ and calculated the geometric series (assuming

δ′ < 1). Note that this bound is independent of φSγ
. Using

(8) in (6) we obtain

mse(xŜγ
|Ec

id) = O(1/m).

This completes the asymptotic characterization of the MSE

averaged over the ensemble of measurement matrices:

mse(x, Ŝγ) = ‖xŜc
γ
‖2 +O(1/m). (9)

We obtain (2) by noting that the preceding result only depends

on w and Ŝγ because ‖xŜc
γ
‖ = ‖wŜc

γ
‖.

The first term in (9) corresponds to the error incurred by

not detecting the whole support set. The ordo term, which

vanishes with m, includes the errors in estimating the compo-

nents in Ŝγ , as well as the effect of Eid.

5. RELATED PRIOR WORK AND CONCLUSION

In this paper, we have derived an achievable tradeoff between

the measurement rate, defined as a relation between the di-

mensions of the measurement matrix, and the estimation

MSE. We have divided the problem into two parts.

First we have considered recovering parts of support set of

the sparse signal. We have established sufficient conditions on

the measurement rate to ensure partial detection of the support

set based on the relative power of the non-zero entries in the

sparse signal. This builds on and extends the results in [7, 8,

9], which considered only perfect recovery of the support set.

In the second part we have derived the MSE performance

in estimating the entries of part of the support set. Prior work

in the field considered the MSE for both ensembles of mea-

surement matrices [10] (as we do here) and for deterministic

measurement matrices [11]. However, our approach is more

general in the sense that it covers the estimation of both par-

tial and complete support sets. This was key to establishing

the measurement rate-MSE tradeoff.
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