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ABSTRACT

We consider the problem of estimating two deterministic vectors in a

linear Gaussian model where one of the unknown vectors is subject

to a sparsity constraint. We derive the maximum likelihood estima-

tor for this problem and develop the Projected Orthogonal Matching

Pursuit (POMP) algorithm for its practical implementation. The cor-

responding constrained Cramér-Rao bound (CCRB) on the mean-

square-error is developed under the sparsity constraint. We then

show that estimation in linear dynamical systems with a sparse con-

trol can be formulated as a special case of this problem.

Index Terms— Sparsity, compressed sensing, maximum likeli-

hood estimation, constrained Cramér-Rao

1. INTRODUCTION

In recent years, compressed sensing (CS) has attracted considerable

attention in many areas by suggesting the possibility to surpass the

traditional limits of sampling theory. CS builds upon the fundamen-

tal fact that many signals can be represented by using only a few

non-zero coefficients in a suitable basis or dictionary. Nonlinear op-

timization can then enable the recovery of such signals from much

fewer measurements than what the dimension of the unknown signal

suggests [1], [2].

The estimation of a sparse vector in the presence of an unknown

non-sparse vector is an important problem that arises in many appli-

cations, such as the recovery of sparsely corrupted signals [3], [4].

In [3], an ad hoc recovery algorithm was explored for the related re-

covery problem of sparse signal corrupted by sparse noise. Another

familiar case is the problem of recovering a low rank matrix from

the sum of the matrix and a sparse matrix representing errors. It was

proven in [5] that under certain assumptions, both the low-rank and

the sparse components can be recovered by solving a convex opti-

mization problem. Recently, there are several works on CS in dy-

namic models, such as the robust smoothing algorithms developed

in [6] for dynamical processes contaminated with sparse outliers.

In this paper, we consider maximum likelihood (ML) estimation

of a combination of a sparse and non-sparse vector in linear models

with Gaussian noise. We show that ML estimation is attained by a

two-stage procedure: sparse recovery by any classical sparse method

applied on the projected measurements followed by non-sparse esti-

mation on the residual. In this work, we develop the Projected Or-

thogonal Matching Pursuit (POMP) algorithm in which the sparse

recovery stage is performed via a variant of the Orthogonal Match-

ing Pursuit (OMP) algorithm. An alternative suboptimal method and
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oracle estimator are also proposed whose performance can be used

as lower and upper bounds on the mean-square-error (MSE), respec-

tively. Another contribution of this paper is the derivation of the

constrained Cramér-Rao bound (CCRB) [7] for this problem, which

is an extension of the existing sparse CCRB in [8].

Finally, we show that the batch estimation of states and sparse

control in dynamic systems can be formulated as the estimation of

sparse and non-sparse vectors under linear models. The intuition be-

hind the sparsity constraint is that control systems sometimes operate

with an on-off control.

In the sequel, we denote vectors by boldface lowercase letters

and matrices by boldface uppercase letters. TheK×K identity ma-

trix is denoted by IK . LetΛ ⊂ {1, . . . , n} be a subset of indices and
Λc = {1, . . . , n} \ Λ. By xΛ we mean the length n vector obtained

by setting the entries of x indexed by Λc to zero. || · ||0 is the ℓ0
seminorm, which is equal to the vector’s number of nonzero entries.

AΛ denotes the submatrix of A made of the columns indexed by Λ
andA† denotes the Moore-Penrose pseudo-inverse ofA.

2. ESTIMATION METHODS

Consider the measurement model

y = Lx+ Su+w, ||u||0 = s, (1)

where L ∈ Rm×l, S ∈ Rm×n, and w is a zero mean Gaussian

vector with covariance matrix σ2Im. The unknown sparse and non-

sparse deterministic vectors are u ∈ Rn and x ∈ Rl, respectively,

where it is assumed that l ≪ m < n and ||u||0 = s. Our goal is to

derive the ML estimator for both u and x from the underdetermined

measurements y. The difference between this problem and classical

CS is the additional parameter of interest, x, which is a non-sparse

vector.

A related sparse recovery problem is discussed in [3], in which

the model in (1) is assumed without the random noise w. In addi-

tion, the non-sparse vector x is assumed to be a noise signal, i.e. a

nuisance parameter. The performance of ℓ1-recovery techniques are

analyzed by using uncertainty relations and practicable recovery al-

gorithm is provided as an ad-hoc solution. This algorithm is similar

to the proposed method, where we investigate the non-Bayesian per-

spective of this problem and shown that this method is in fact the

ML estimator.

2.1. ML estimation

We now derive the ML estimator (or equivalently, least squares) for

(1) and show that it is a two-stage procedure: sparse recovery of u

from the projected measurements and then non-sparse ML estima-

tion of x from the residual.
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Incorporating the sparsity constraint, the constrained ML esti-

mate of x and u from (1) is given by

min
x,u

||y − Lx+ Su||22 , s.t. ||u||0 ≤ s. (2)

For a given s-sized index set of u, Λ, the ML problem in (2) is

equivalent to

min
ṽΛ

||y − G̃ΛṽΛ||
2
2, (3)

where G̃Λ
△
= [L

... SΛ] and ṽΛ
△
=

[

xT ,uT
Λ

]T
∈ R

l+s. Under the

assumption that G̃Λ is a full-rank matrix for any Λ, the solution to
the minimization problem in (3) is given by

ˆ̃vΛ = (G̃T
ΛG̃Λ)

−1
G̃

T
Λy. (4)

By using the blockwise inversion of matrices,

(G̃T
ΛG̃Λ)

−1 =

[

LTL LTSΛ

ST
ΛL ST

ΛSΛ

]−1

=

[
(

LTL
)−1

+ L†SΛK
−1ST

Λ(L
†)T −L†SΛK

−1

−K−1ST
Λ(L

†)T K−1

]

, (5)

whereK = ST
ΛP

⊥
LSΛ, L

† =
(

LTL
)−1

LT , and P⊥
L = Im − LL†

is the orthogonal projection ontoR(L)⊥. Substituting (5) in (4), we
obtain the ML estimator of ṽΛ:

ˆ̃vΛ =

[

L†
(

Im − SΛK
−1ST

ΛP
⊥
L

)

K−1ST
ΛP

⊥
L

]

y. (6)

Therefore, the ML estimators of u and x are given by

ûΛ̂ = (ST

Λ̂P
⊥
LSΛ̂)

−1
S
T

Λ̂P
⊥
Ly, (7)

and

x̂ = L
† (y − Sû) , (8)

respectively, where Λ̂ is the ML estimated subset of nonzero indices

of u. By substituting (6) into (2), the estimator of Λ is

Λ̂ = argmin
Λ

||y − Lx̂− SΛûΛ||
2
2

= argmin
Λ

||P⊥
LSΛûΛ||

2
2. (9)

It can be verified that the estimators in (7) and (9) produce the

estimate of the sparse vector u from the projected observations,

P
⊥
Ly = P

⊥
LSu. (10)

Therefore, ML estimation is composed of a two-stage procedure.

First, y is projected onto R(L)⊥ by using (10). The sparse vector

u can then be recovered from P⊥
Ly by using any standard sparse

recovery method on the projected measurements in (10). Finally, x

is estimated by using the residual y − Sû, as described in (8).

2.2. The POMP method

Sparse recovery of u from the noisy measurements P⊥
Ly in (10)

can be achieved by any existing sparse recovery method. The two

main strategies for this NP -hard estimation are ℓ1 relaxation and

greedy methods, such as the OMP technique. The basic principle

behind greedy algorithms is to iteratively find the support set of the

sparse vector and reconstruct the signal using the restricted support

ML estimate. The OMP method [9] proceeds by finding the column

of the CS matrix that correlates most to the signal residual, which is

obtained by subtracting the contribution of a partial estimate of the

signal from the measurements. In this paper, the implementation of

the two-stage ML estimation is exemplified by using OMP.

Our proposed POMPmethod is a modified version of the regular

OMP by taking into account both the additional non-sparse vector x

and the sparsity of u. This method consists of two stages: first, it

iteratively finds the support set of u by using the projected measure-

ments P⊥
Ly. At each iteration, the algorithm proceeds by finding

the column of the projected CS matrix,P⊥
LS, that correlates most to

the current projected signal residual,P⊥
L r

(i), where i is the iteration

index and r(i) is obtained by subtracting the contribution of a partial

estimate of the signal from the projected measurements. Second, the

non-sparse vector x is estimated by substituting the final estimator

u(i) in (8). The resulting POMP algorithm is described in Table 1.

Table 1. The POMP algorithm

Initialization: Fix i = 0 and set the temporary solution, resid-
ual, and support to:

û
(i) = 0, r

(i) = P
⊥
Ly, S(i) = ∅.

Main iteration: Increment i and apply

1. Update support: Find j0 such that

j0 = argmax
j

(

sTj P
⊥
L r

(i−1)
)2

sTj P
⊥
L
sj

.

2. Update solution: Compute

û
(i) = min

u

||P⊥
Ly −P

⊥
LSu||

2
2, s.t. u ∈ S(i)

.

3. Update residual: Compute

r
(i) = P

⊥
Ly −P

⊥
LSû

(i)

4. Stopping rule: If ||r(i)||22 < T1 stop.

Output: û = û(i) and x̂ = L† (y − Sû).

2.3. Comparison with other methods

In our simulations, we compare our approach with a suboptimal

method and oracle estimation. The MSE of these methods can be

used as an upper and lower bound on the MSE of the proposed

POMP algorithm.

• Suboptimal sparse recovery: Instead of solving (2), we can

solve

min
v

||y −Gv||22, s.t. ||v||0 ≤ l + s, (11)

by using any standard sparse recovery method, where G =

[L
... S] and v =

[

xT ,uT
]T
. The estimate x̂ is obtained by

selecting the first l elements of v̂, and an estimate of u is

obtained by selecting the last n elements of v̂. This approach

has higher computational complexity and does not utilize the

prior information that the first l elements of v are certainly in

the support of v. Thus, the MSE of the solution of (11) can

be used as an upper bound on the MSE of the solution of (2).
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• Oracle ML estimation: The oracle ML estimator is based on

prior knowledge of the support Λ of the sparse signal u. With

this added information, both x and u can be reconstructed by

direct ML estimation via

min
x,u

||y − Lx− Su||22, s.t. supp(u) = Λ. (12)

The solution is given by

ûΛ = (ST
ΛP

⊥
LSΛ)

−1
S
T
ΛP

⊥
Ly (13)

x̂ = L
†(y − SΛûΛ). (14)

Clearly, the MSE of the ML oracle estimator is always lower

than the MSE of the proposed method.

3. THE CCRB

We next derive the CCRB for the model in (1). The derivations are

based on the general CCRB [7] and the more specific CCRB for

sparse estimation [8].

The model in (1) can be rewritten as

y = Gv +w, (15)

whereG = [L
... S] and v =

[

xT ,uT
]T
. The CCRB for estimating

v is given by [7]

Cov(v̂) � U(UT
JU)†UT

, (16)

where J is the Fisher information matrix (FIM) and matrixU spans

the constraint. The CCRB in (16) is a lower bound on the MSE ma-

trix of any constrained locally-unbiased estimator of v in the sense

that the estimator’s bias, b
△
= E[v̂]− v, satisfies

∂b

∂v
U = 0. (17)

It can be verified that the FIM for this problem is given by

J =
1

σ2

[

LTL LTS

STL STS

]

. (18)

In addition, similar to the derivations in [8], a possible choice for the

matrixU corresponding to the sparsity constraints is

U =

[

Il 0l×s

0n×l Us

]

, (19)

where Us = [ei1+l, . . . , eis+l] ∈ Rn×s, in which ej is the jth

column of the identity matrix In. By substituting (18) and (19) in

(16) and using SUs = SΛ, we obtain the CCRB for our problem:

Cov(v̂) � σ
2
U

([

LTL LTSΛ

ST
ΛL ST

ΛSΛ

])−1

U
T
. (20)

In particular, (20) implies that the bounds on the MSEs of u and x

are

E
[

||û− u||22
]

≥ σ
2
trace

(

Us(S
T
ΛP

⊥
LSΛ)

−1
U

T
s

)

= σ
2
trace

(

(ST
ΛP

⊥
LSΛ)

−1
)

(21)

and

E
[

||x̂− x||22
]

≥

σ
2
trace

(

(LT
L)−1 + L

†
SΛ(S

T
ΛP

⊥
LSΛ)

−1
S
T
Λ(L

†)T
)

. (22)

It can be shown that the bound in (20) is the MSE of the oracle

estimator in (13)-(14).

The CCRB in (20) is a lower bound on the MSE matrix of any

estimator which satisfies the condition in (17) with the matrix U

from (19). This condition implies that x̂ should be a locally unbiased

estimator in the classical sense and û should be a locally unbiased

estimator in the sense of [8] and [10]. For known non-sparse vector

x, the CCRB in (20) reduces to the bound in [8], as we expect.

4. APPLICATION: STATE AND SPARSE INPUT

ESTIMATION FOR DYNAMICAL SYSTEMS

In this section, we consider a special case of the model (1) in the

setting of dynamical systems with sparse control where our goal is

to estimate both the system state and the control input. The intuition

behind the sparsity constraint is that control systems sometimes op-

erate with an on-off control. By utilizing the sparsity structure of

the control input, recovery of the initial state and control can be per-

formed from compressed measurements with lower dimension than

the dimension of the unknown vectors, x and u.

Consider the following MIMO state space discrete-time model

Φ(A,B,C) :

{

xt+1 = Axt +But

zt = Cxt +Dut
, t = 0, 1, . . . , (23)

where the state vector is xt ∈ R
l, the input control vector is ut ∈

R
Ku , zt ∈ RKz are the observations, and x0 ∈ Rl is the system’s

initial condition. The state transfer matrix, control matrix, and ob-

servation matrix are A ∈ Rl×l, B ∈ Rl×Ku , C ∈ RKz×l, and

D ∈ RKz×Ku , respectively, and they are assumed to be known.

Our goal is to estimate x0 and u from compressed measurements of

z, where we assume that u is sparse.

The recursive model in (23) can be reformulated in a “batch”

form as follows:

z = ONx0 + ΓNu, (24)

where

ON =















C

CA

CA2

...

CAN−1















,

ΓN =















D 0 . . . 0

CB D 0 . . . 0

CAB CB D . . . 0
... . . . 0

CAN−2B CAN−3B . . . CB D















,

z = [zT0 , . . . , z
T
N−1]

T ∈ R
NKz ,

u = [uT
0 , . . . ,u

T
N−1]

T ∈ R
n
.

It can be seen that ΓN ∈ RNKz×n is a block-Toeplitz lower-

triangular matrix. In addition, the system matrices A and C are

assumed to be full-rank matrices thus,ON ∈ RNKz×l is a full-rank
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matrix. The vector u is assumed to be a sparse vector with, at most,

s nonzero values, i.e. ||u||0 ≤ s.

The compressed signal of the measurements vector z from (24)

is given by

y = Ψz = Lx0 + Su, (25)

where the CS matrix is Ψ ∈ Rm×NKz , L = ΨON ∈ Rm×l,

S = ΨΓN ∈ Rm×n, and n = NKu. The model in (25), with the

addition of Gaussian noise, is identical to (1) with x0 = x.

From a dynamic system perspective, the problem considered

here is slightly different than the standard Kalman filtering-based

state estimation, since the estimation problem includes not only es-

timating the states but also the sparse control.

5. SIMULATIONS

We consider the state space model from (24) with the initial state

x0 = [78, 70]T , N = 100 samples,Ku = 1, and the control vector
satisfies ||u||0 = 3. The index setΛwas randomly chosen uniformly

and the values were uΛ = [12, 10, 5]T . The system matrices were

A =

[

0.98 0
0 0.9

]

, B =

[

−1
−1

]

, C = I2, D =

[

0.75
0.75

]

.

The CS matrix, Ψ, was a random Gaussian matrix and only 70% of

the measurments were used. The performance was evaluated using

5000Monte-Carlo simulations.

The root MSE (RMSE) of the estimators of x0 and u by using

the POMP algorithm, suboptimal OMP-type algorithm, and oracle

estimate compared to the proposed CCRB in (21)-(22) are presented

in Fig. 1 versus signal-to-noise ratio (SNR), where the SNR is de-

fined as SNR =
||L||2

2
+||S||2

2

σ2 . It can be seen that the proposed al-

gorithm achieves good results and asymptotically attains the corre-

sponding CCRB.
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Fig. 1. The RMSE of the estimators of u (upper) and x0 (lower) vs.

SNR for s = 3, N = 100.

Fig. 2 shows the probability of correct support detection for

known sparsity order for both the proposed POMP and the subopti-

mal algorithms. This probability is given by

Pd =
#(supp(u)

⋂

supp(û))

#(supp(u))
,

where for the suboptimal method also the probability of x0-support

detection is presented. It can be seen that the probability of detection

is higher for the POMPmethod at any SNR and that at high SNR this

probability approaches 1 for both methods.
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Fig. 2. Probability of support detection vs. SNR for s = 3 and

N = 100.

6. CONCLUSION

We presented the problem of joint sparse and non-sparse estimation

in linear models with Gaussian noise. The corresponding ML esti-

mator has been shown to satisfy a separation principle, i.e. it can be

separated into two stages: sparse recovery followed by non-sparse

estimation. The ML estimation is implemented via the proposed

POMP method. In addition, the CCRB that we developed for this

problem is shown to equal the MSE of the oracle estimator. Also,

the batch estimation of states and the input in a dynamic system with

a sparse input is shown to be equivalent to this estimation problem.

Finally, the performance of the proposed methods and new CCRB

are presented for the problem of control and states estimation in dy-

namical systems. In case of high SNR, the MSE of the proposed

POMP algorithm is shown to attain the CCRB.
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