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ABSTRACT

This work aims to estimate multiple node positions in the
presence of unknown turn-around times within the context
of cooperative sensor network localization. In the adopted
scheme, each target can communicate with a set of anchors
(probably not in sufficient numbers) and a set of other tar-
gets. Two-Way Times-of-Arrival between them are measured,
which includes unknown processing delays at both channel
endpoints. Since finding the Maximum Likelihood Estimates
(MLE) of the positions and turn-around times given those
measurements poses a difficult nonconvex optimization prob-
lem, it is approximated by a Nonlinear Least Squares prob-
lem. Then, the positions and turn-around times of multiple
targets are estimated jointly by solving an Euclidean Distance
Matrix completion problem. Simulations show that the local-
ization accuracy of the proposed method is good, providing
an initial point that subsequently enables MLE to attain the
Cramér-Rao Lower Bound for all considered scenarios.

Index Terms— Cooperative sensor network localiza-
tion, turn-around time, two-way time-of-arrival, Euclidean
distance matrix, semidefinite programming.

1. INTRODUCTION

Many wireless sensor network (WSN) applications require
the involved sensors to be accurately localized [1]. Among
the noisy measurements upon which localization could be
based, Times-of-Arrival (TOA) provide a good tradeoff be-
tween the accuracy and implementation cost [1, 2]. In this
work, the Two-Way Time-of-Arrival (TW-TOA) protocol is
adopted, where the anchor node sends the ranging request
and the target node responds back. The time of flight of the
signal is proportional to the distance between target-anchor
if there is no delay in the response time of the target, or if
that delay, called turn-around time, is correctly included in
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the reply packet. However, in practical scenarios, calibration
of nodes to determine the turn-around time is undesirable. In
addition, the responding target might deceive the anchor by
reporting a wrong turn-around time. Therefore, localization
algorithms should tackle this issue.

In noncooperative sensor networks, target nodes can com-
municate only with anchor nodes [3]. The lack of accessi-
ble anchor nodes and also limited connectivity among anchor
nodes and target nodes lead to the emergence of the cooper-
ative localization paradigm, in which target nodes are able to
communicate with both anchor nodes and other target nodes.
Therefore, not only are TOAs between target nodes and an-
chor nodes measured, but also the target nodes themselves
are involved and collect TOA measurements from each other.

A closed-form Least Squares (LS) estimator is derived to
localize a single target in asynchronous networks, in which
clock offset and skew are unknown [4]. The authors propose
an asymmetric trip ranging (ATR) protocol, where anchors
are not only able to communicate with the target, but also
listen to the other anchor-target communications. An asyn-
chronous position measurement system is proposed in [5] and
an LS based method is solved for indoor localization of a sin-
gle target by using the differential TOA. A generalized total
LS algorithm is developed for the joint synchronization and
localization of an unknown node in [6]. The authors con-
sider hierarchical hop-by-hop time synchronization and local-
ization where only one node needs to be localized and syn-
chronized to the anchors at a time. Recently, an LS based
approach using hybrid TW-TOA and TDOA in Cooperative
Networks is proposed for the joint estimation of unknown
turn-around times and node locations [7]. The authors did
not consider TW-TOA measurements between targets to im-
prove the accuracy. All mentioned methods either estimate
a single target position or estimate each target position at a
time by a linearization-based LS. Therefore, the main contri-
bution of the current work is an accurate Semidefinite Pro-
gramming (SDP) method which localizes multiple targets si-
multaneously in the presence of unknown turn-around time in
a cooperative network.

To find the Maximum Likelihood Estimator (MLE) for
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the sensor network localization problem with unknown turn-
around times, it is necessary to solve a nonlinear and non-
convex optimization problem. To avoid this difficulty, the
original MLE is transformed into an approximate Nonlinear
Least Squares (NLS) problem using squared range measure-
ments. Then, relaxation techniques are applied to convert the
NLS problem into a convex optimization problem by resort-
ing to Euclidean Distance Matrix (EDM) completion (a type
of SDP). Through this, the target turn-around times are con-
sidered as nuisance parameters and estimated jointly with the
target locations. The advantage of an SDP is that its cost
function does not have local minima and thus convergence
to the global minimum is guaranteed [8]. The drawback is
that the SDP technique is sub-optimal and cannot achieve the
best possible performance under all conditions.

The remainder of the paper is organized as follows. Sec-
tion 2 formalizes the problem and shows the EDM completion
as an SDP method. Simulations and computational complex-
ity analysis are given in Section 3. Conclusions are drawn in
Section 4.

2. PROBLEM FORMULATION

This section formulates the cooperative localization problem
using TW-TOA measurements, where the target locations
and turn-around times are unknown. Two sets of TW-TOA
measurements are available to the estimator: target-anchor
and target-target measurements. Let sj ∈ Rl, j ∈ S =
{1, . . . , N} and ai ∈ Rl, i ∈ A = {N + 1, . . . , N + M}
denote N target and M anchor locations, respectively. The
following two sets are defined as

Bj = { i | anchor i can communicate with target j },
Cj = { i | target i can communicate with target j }.

The cooperative TW-TOA measurement (converted to dis-
tance) [1], when the i-th node interrogates the j-th node, is
expressed as

d̂ij = Tj + 2dij + nij , j ∈ S, i ∈ Bj ∪ Cj (1)

where Tj is the turn-around time of the j-th target (converted
to distance), dij = ∥si− sj∥, i ∈ Cj and dij = ∥ai− sj∥, i ∈
Bj . In addition, nij are modeled as independent and identi-
cally distributed (i.i.d.) zero mean Gaussian random variables
with standard deviation σij [1]. Consequently, there are in to-
tal l×N+N unknown elements that should be estimated, in-
cluding the target locations and the turn-around times defined
as S = [s1, . . . , sN ] ∈ Rl×N and T = [T1, . . . , TN ]T ∈ RN ,
respectively.

In practical scenarios, we can assume that a target sends a
ranging request to another target, which responds back. When
the communication initiator gets the response, it then sends a
final packet as if it had been interrogated. In this way, with

three communications, two TW-TOA measurements are ob-
tained. Whenever an anchor sends a ranging request to a tar-
get, that target not only responds back to the ranging message
but also sends its TW-TOA measurements obtained with re-
spect to the other targets with which it has communicated.
As a result, all TW-TOA measurements are conveyed to the
central node via anchors.

2.1. EDM Formulation

By moving Tj to the left hand side (LHS) of the equation and
squaring both sides, (1) can be reformulated as

d̂2ij − 2d̂ijTj + T 2
j = 4d2ij + 4dijnij + n2

ij . (2)

For a sufficiently small noise, we can neglect n2
ij in the right-

hand side of (2) and write

d̂2ij − 2d̂ijTj + T 2
j = 4d2ij + ϵij , (3)

where ϵij = 4dijnij is a zero-mean Gaussian noise with stan-
dard deviation 4dijσij . The NLS formulation that matches
predicted (dij , Tj) vs. observed d̂ij ranges is

minimize
S,T

∑
j∈S

∑
i∈Bj∪Cj

(d̂2ij − 2d̂ijTj + T 2
j − 4d2ij)

2.

(4)
The unknown squared distances can be arranged into a single
symmetric EDM matrix of size (N +M) × (N +M), with
elements Eij = d2ij , and satisfying the properties of the EDM
cone E [8, 9]

Eii = 0, Eij ≥ 0, −JEJ ≽ 0, (5)

where J =
(
Iρ − 1

ρ1ρ1ρ
T
)
, ρ = N + M, is a centering

operator which subtracts the mean of a vector from each of its
components and Iρ is ρ× ρ identity matrix.

Introducing a vector epigraph variable K = [K1, . . . ,KN ]T

yields the following relaxed EDM problem:

minimize
E,T,K

∑
j∈S

∑
i∈Bj∪Cj

(d̂2ij − 2d̂ijTj +Kj − 4Eij)
2

subject to E ∈ E , E(A) = A

Kj ≥ T 2
j , Tj ≥ 0, and βj ≥ Kj .

(6)

The constraint E(A) = A enforces the known a priori spa-
tial information related with anchors in the appropriate EDM
submatrix. In (6) the desired nonlinear equality constraint
Kj = T 2

j is relaxed to an inequality to obtain a convex opti-
mization problem. However, the relaxation can cause Kj to
become arbitrarily large, which is undesirable because esti-
mated locations become arbitrarily far apart. To mitigate this
difficulty, large Kj values might be penalized by adding a reg-
ularization term to the objective [8, 10]. However, this is sen-
sitive to the penalization term [11]. Another way is to upper
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bound Kj by a constant βj , which might be chosen with re-
spect to prior knowledge of system specifications, i.e., knowl-
edge of the maximum possible value of turn-around time or
according to the method proposed in Section 2.2.

Note that the solution of (6) is a distance matrix E. De-
tailed explanations of how to estimate the spatial coordinates
of the targets from EDM and the usage of anchors are given
in [12]. The basic idea is to use a linear transformation to
obtain the Gram matrix (ZJ)TZJ = −1

2JEJ, from which
spatial coordinates Z = [s1, . . . , sN ,aN+1, . . . ,aM+N ] are
extracted by the singular value decomposition up to a unitary
matrix. The anchors are then used to estimate the residual
unitary matrix by solving a Procrustes problem [12].

2.2. Estimate of βj

To provide a reasonably good upper bound, βj , for the vari-
able Kj , (3) can be approximated by dropping the noise term
when i ∈ Bj as

d̂2ij − 2d̂ijTj + T 2
j = 4∥ai∥2 − 8aTi sj + 4∥sj∥2, (7)

and rearranging terms as

d̂2ij − 4∥ai∥2 = −8aTi sj + 4∥sj∥2 + 2d̂ijTj − T 2
j , (8)

which can be written as bij = Hijyj , where bij = d̂2ij −
4∥ai∥2, Hij = [1, − 8aTi , 2d̂ij ] and yj = [4∥sj∥2 −
T 2
j , sj , Tj ]

T . We form the vector bj and matrix Hj from
bij and Hij , i ∈ Bj , such that bj = Hjyj . If Hj has full
column rank, coarse estimates of sj and Tj are obtained from
the LS solution

ŷj = (HT
j Hj)

−1HT
j bj . (9)

Through simulations it was observed that the accuracy of po-
sition estimation is better than the turn-around time estimation
with this method. Therefore, estimated turn-around times are
calculated as T̃j = (

∑
i∈Bj

(d̂ij − 2d̃ij))/|Bj |, where d̃ij is
the estimate of dij from the estimated target position ŝj , and
|Bj | is the cardinality of Bj . The upper bound in (6) is set as
βj = T̃ 2

j . Note that to solve (9), at least 4 (2D) or 5 (3D) an-
chors are needed. The estimator first estimates the locations
and turn-around times of targets that are connected to a suf-
ficient number of anchors, and it uses the estimated position
of the neighboring targets as virtual anchors for the remaining
ones. When these conditions are not satisfied, the estimator
simply assigns a constant to βj based on prior knowledge of
maximum turn-around times.

Note that, ideally, we would like βj to be large enough
(but no larger) so that the true values of Kj = T 2

j for a given
network setup are included in the feasible set of (6). Even
though the method above for setting βj does not really guar-
antee that, simulation results show that it is a good heuristic.

3. SIMULATIONS

In this section, computer simulations are performed to evalu-
ate the performance of the proposed algorithm which will be
called “EDM” in the figures. The comparison metric is the
total root mean-square error (RMSE) defined as

RMSE =

√√√√ 1

L

1

N

L∑
k=1

N∑
i=1

∥si − ŝki ∥2, (10)

where ŝki denotes the i-th estimated target position in the k-th
Monte Carlo run (L = 1000) for the specific noise realization.
To assess the fundamental hardness of the position estimation,
error plots also show the average Cramér-Rao Lower Bound
(CRLB) with known (“CRLB-Known-T”) and unknown turn-
around times (“CRLB”) for each noise variance. The deriva-
tion of the CRLB is not given due to the space constraints, but
it follows the same reasoning as in [2].

To compare the proposed algorithm with MLE, Matlab’s
function lsqnonlin is initialized with the output of the pro-
posed method and with random initialization, denoted be-
low as EDM-MLE and RAND-MLE, respectively. Addition-
ally, results for EDM localization with true turn-around time
(“EDM-Known-T”) will be provided. In every realization of
the network, the turn-around time is randomly drawn from
[1, 100] ns and the measurement noise assumed i.i.d. Gaus-
sian, with σij = σ ∈ [0.01, 18] m.

Experiment 1: A fully connected (all anchors and targets
are within communication range) randomly distributed net-
work in [−80 80] m × [−80 80] m consisting of 6 targets and
8 anchors is generated at each Monte Carlo run for each noise
level. Fig. 1 shows the RMSE of different approaches. The
accuracy of the proposed method is good and the degrada-
tion in performance due to unknown turn-around time is small
when compared to EDM-Known-T. Additionally, EDM-MLE
attains the CRLB. The RAND-MLE is the worst one.
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Fig. 1. RMSE comparisons in a fully connected randomly
distributed network.

Experiment 2: The behavior of the algorithms is exam-
ined for a structured network, in which ai ∈ {[±50,±50]T ,
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[0,±70]T , [±70, 0]T } m and si ∈ {[±20, 40]T , [0,±40]T ,
[0, 0]T , [20, 40]T } m, i.e., when all 6 targets are in the con-
vex hull of 8 anchors and they are fully connected. As shown
in Fig. 2, the accuracy of EDM is good and EDM-MLE at-
tains the CRLB. However, for this scenario RAND-MLE also
achieves the CRLB because the cost function appears to have
a unique minimum. The derivation of an alternative MLE and
the effect of the initialization techniques on the number of the
MLE iterations will be the subject of future work.
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Fig. 2. RMSE comparisons in a fully connected structured
network.

Experiment 3: The sample mean and the uncertainty el-
lipsoids of EDM and EDM-Known-T are given in Fig. 3(b)
when σ = 10 m for the structured network. The connectiv-
ity matrix for the network is shown in Fig. 3(a), where the
5th and 6th targets are only connected to two anchors and all
others communicate with five anchors. Although two anchors
are not enough for the 5th and 6th targets to be localized in
2D, all positions are eventually determined with good accu-
racy through cooperation, as the remaining targets are within
range of a sufficient number of anchors. Fig. 3(c) shows the
RMSE comparisons for this network. With the limited con-
nectivity to anchors the localization problem becomes harder,
similarly to what is known to occur even with full connectiv-
ity when some of the targets lie outside the convex hull of the
set of anchors. This is seen, e.g., in the significant degradation
of RAND-MLE for strong observation noise levels (σ > 10
m). However, EDM still provides good accuracy. Moreover,
EDM-MLE attains the CRLB.

A Note on Practical Computational Complexity: The
worst case computational complexity of SDP based al-
gorithms for sensor network localization is bounded by
O((N + M)6) [13]. For the proposed algorithm, CPU time
empirically increases with (N + M)4.5. The experiments
were conducted on a laptop with Intel Core i5-2430M 2.4
GHz CPU and 4 GB of RAM, using MATLAB 7.11, CVX
1.22 and SeDuMi as a general purpose SDP solver. The CPU
time to solve the proposed method is about 0.5 seconds for
this network.
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(b) The sample mean and uncertainty ellipsoids.
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(c) The RMSE comparisons.

Fig. 3. RMSE comparisons, sample mean and uncertainty
ellipsoids of localization when the 5th and 6th targets of a
structured network are connected to only two anchors.

4. CONCLUSION

EDM completion, a type of SDP technique with reasonable
computational cost, is proposed to localize multiple targets
when target turn-around times are not known under the TW-
TOA protocol. It is shown that cooperation among targets
provides accurate localization even if some targets are con-
nected to few anchors. Additionally, when the proposed
method is used as an initialization of MLE, the latter attains
the CRLB.
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