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ABSTRACT

Tracking of the orientation of a rigid body based on directional mea-
surements is a key issue in many applications. Configurations in this
sense are precisely representable as elements of the rotation group
SO(3), and the issue devolves to one of tracking on this group, for
which and algorithm is described here. Its novelty derives from the
use of maximum entropy distributions on these groups as models for
the priors, and from the approximation algorithms that permit nu-
merical implementation of such a model. These solutions can be
written in a recursive form. While the general ideas apply in all di-
mensions, the focus of this paper is on the important 3-dimensional
case. It is impossible to compute the exact solution; instead, obtained
here is a highly effective approximation. It is shown that, in contrast
with other approaches, the algorithm described here produces out-
puts which are both very accurate and statistically meaningful.
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Von Mises Fisher Distribution

1. INTRODUCTION

A large number of applications require tracking of orientation of
rigid bodies or linked systems of rigid bodies. These arise, in par-
ticular, in tracking of satellites and space junk, estimation of robot
configurations, autonomous UAVs, and in tracking of human and an-
imal body motions. Models of this kind arise wherever at least part
of the dynamics of the system under observation can be character-
ized as preserving distance from a fixed centre. A mathematically
correct model for such problems represents dynamical changes in
the system in terms of elements of the group SO(3) of rotations on
R3; that is, matricesR satisfyingRRT = I . Uncertainty about these
dynamical changes is expressed in terms of probability distributions
(or more specifically, densities) on that group. The current state of
the system is described by such a density. Tracking in this context
requires a method for updating this representation, taking account of
ongoing measurements. Choice of a family of distributions to repre-
sent the uncertainty is always problematic once one departs from the
linear Gaussian model on R3, where the Kalman filter, using Gaus-
sian noise models, is demonstrably optimal for natural measures of
performance.

Despite its obvious importance, the literature on this topic, per
se, is sparse. Most of the known approaches to the problem rely on
linear approximations to the state space SO(3) and the dynamical
model. These methods are discussed in [7,13]. Other approaches use
linear estimation methods to track rotation given by rotation matrices
or quaternions [11, 12]. For this formulation, the additive Gaussian
noise assumption of the Kalman filter is not appropriate simply be-
cause the addition of Gaussian noise to the rotation matrix will not in

general result in another rotation matrix. These methods need to use
some ways of “projecting” the results back into the correct space;
namely, the group SO(3). In practice, as a result of the incorrect
choice of the noise model, these algorithms require very frequent
re-initialization of the tracker.

Perhaps the closest approach to ours is the complementary
tracker as described in [8]. This overcomes the problems enunci-
ated above to some degree, but does not provide a mechanism for
computing the error in the estimator. In effect, it is a constant gain
filter. As a result, only ad hoc internal methods for correction of the
tracker are available.

Maximal entropy distributions on the rotation group have den-
sities with respect to Haar measure (the unique probability measure
invariant under left and right translation in the group) of the form

Pr(R;A) = α(A)eTr(AR), R ∈ SO(3) (1)

where the matrix A ∈ R3×3 of rank ≥ 2 encompasses both a rota-
tional mean and a measure of spread, known as concentration. That
these are indeed the maximal entropy distributions subject to a con-
straint of the form

Z =

∫
SO(3)

RPr(R;A) [dR], (2)

for a specified matrix Z, follows by a straightforward Lagrangian
extremal argument.

The polar decomposition of the matrix A in (1) as R̂TA0

provides a version of the mean of the distribution Pr(R;A),
R̂ ∈ SO(3), and an elliptical component, A0 of the polar de-
composition, regarded as the concentration matrix [2]. The matrix
polar decomposition always exists and is unique. The partition
function α(A) is a normalizing factor, so that∫

SO(3)

Pr(R;A) [dR] = 1, (3)

where [dR] denotes integration with respect to the Haar measure on
the rotation group. The term α(A) can be shown to be the reciprocal
of a hypergeometric function formed using the matrix of eigenvalues
of the concentration matrix A, denoted by Σ. The hypergeometric
function in question is, in fact, 0F1( 3

2
; 1

4
Σ2), and this will be im-

portant for later calculations. The reader is referred to [4] for a deep
discussion of some of these concepts. Indeed, as von Mises-Fisher
distributions, maximal entropy distributions (1) have been widely
studied [4–6, 9].

The collection of von Mises-Fisher matrix distributions has
the pleasing property of being closed under point-wise products,
as can be easily verified. However, dynamical updates of a given
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von Mises-Fisher distribution, based on, say, a (noisy) constant an-
gular velocity model, do not retain the von Mises-Fisher character.
This property, characteristic of the linear Gaussian model, fails for
such distributions, as it does for many linear tracking schemes that
do not strictly accord with the conditions for the Kalman filter. As
in the non-Kalman linear case, when this happens, an approximation
is needed to project back into this class, so as to produce a recursive
filter. We describe such a technique in this paper. One desirable
characteristic is that the spread of the approximate posterior should
be worse (that is, is more uncertain) than is the case for the distri-
bution without approximation. This is an important characteristic,
since, especially in contrast with the extended Kalman filtering, this
filter effectively assumes no more than is given by the underlying
model and the observations. We have not been able to establish this
for the three dimensional case treated here, but in another publica-
tion will demonstrate it for the two dimensional case. Nonetheless,
Monte Carlo simulations suggest that the result is close to true in
three dimensions.

2. TRACKING ON SO(3)

In three dimensions, the orientation of an object is represented by
an element of the special orthogonal group SO(3) corresponding to
the rotation of the object from a specified but arbitrary initial po-
sition. The matrix von Mises-Fisher Distributions, defined in (1),
are the maximal entropy probability distributions Pr(R;A) over ro-
tation matrices. We note that the natural volume of the manifold
underlying SO(3) is 16π2, and write the Haar measure of SO(3)
in terms of exponentials of elements of the tangent space. This uses
Rodrigues’ rotation formula [14], which relates the rotation matrix
and an angular velocity vector w = (w1, w2, w3)T , that can be re-
garded as a member of the tangent space via

w←→

 0 w1 −w2

−w1 0 w3

w2 −w3 0

 = [w]. (4)

Rodrigues’ formula gives for R = e[w]

R = I + sin(θ)[ε] + (1− cos(θ))[ε]2 (5)

where θ =
√
wTw is an angle of rotation around an axis ε = w

θ
.

One can verify that

[dR] =
1− cos θ

8π2θ2

3∏
i=1

dwi, for |θ| ≤ π, (6)

2.1. Mean and Concentration Matrices on SO(3)

To derive the tracking algorithm it will be necessary to compute inte-
grals of the form (2), where Pr(R;A) is as in Eq. (1). An important
property of Z is given by the following simple Lemma 1.

Lemma 1 Z is diagonal if the matrix A is diagonal.

The proof is a straightforward consequence of the fact that a matrix
is diagonal if and only if it commutes with all diagonal matrices, and
is omitted.

If the matrix A is non-diagonal, it is decomposable as a product
A = R̂TV ΣV T , where R̂ and V ΣV T are the polar and elliptic
components, respectively, of A. Here Σ is the diagonal matrix of
eigenvalues [6] κ1, κ2, κ3 of A. This decomposition keeps the R̂ as

a rotation and so it is possible that Σ is not positive semi-definite to
compensate. If A is singular this decomposition may not be unique.
The first moment is computed as

Z = V f(Σ)V T R̂, (7)

where f(Σ) is a diagonal matrix with the elements on the diagonal
given by [6],

fi =
∂

∂κi
log 0F1(

3

2
;

1

4
Σ2) for i = 1, 2, 3. (8)

These elements (fi) are computed in the tangent space of SO(3) at
the identity; that is, in the Lie algebra [10] of SO(3), which consists
of the skew-symmetric matrices. By Equation (6),

0F1(
3

2
;

1

4
Σ2) =

1

8π2

∫
|θ|≤π

1− cos θ

θ2
eTr(ΣR)dw. (9)

Using Rodrigues’ formula and observing that Tr(Σ[w]) = 0, we
obtain

0F1(
3

2
;

1

4
Σ2) =

1

8π2
eTr(Σ)∫

|θ|≤π

1− cos θ

θ2
e
− 1

2
wTΣ′w 1−cos θ

θ2 dw.
(10)

where Σ′ as a diagonal matrix

Σ′ =

κ2 + κ3 0 0
0 κ1 + κ3 0
0 0 κ1 + κ2

 . (11)

A very simple Taylor approximation gives 1−cos θ
θ2

≈ 1
2

; also we
assume that for large values on the diagonal of the matrix Σ′ the
spread of the Gaussian function e−

1
2
wTΣ′w is essentially contained

in the ball of radius π. These, taken together, allow us to compute
the following (again the details are omitted):

f(Σ) ≈ I−

1

2

 1
κ1+κ3

+ 1
κ1+κ2

0 0

0 1
κ2+κ3

+ 1
κ1+κ2

0

0 0 1
κ1+κ3

+ 1
κ2+κ3

.


(12)

As stated earlier, it would be worthwhile to show that the approxi-
mate distribution has a wider “spread” than the actual distribution.
Unfortunately, it is not apparent from the formulae whether the ac-
tual f(Σ) is greater or smaller than its approximation in Eq. (12).
On the other hand, we have evaluated the integral in Eq. (2) using a
Monte Carlo method and orthogonal matrices uniformly distributed
on SO(3), using the technique described in [3], for a large number
of concentration matrices and compared the result with the approxi-
mate solution. It appears from these numerical experiments that the
approximate matrix is not always larger then the actual matrix, but
the relative error does not exceed 1% if any one of the eigenvalues
κi ≥ 10. This phenomenon deserves more attention and we intend
to continue to investigate it.

2.2. Bayesian Prediction

In our approach, the posterior distribution to time k−1 of the rotation
matrix Rk−1 is taken to be a matrix von Mises-Fisher distribution
with mean R̂k−1 and concentration matrix Ak−1, i.e

Pr(Rk−1|Zk−1, . . . , Z1) = α(Ak−1)eTr(R̂Tk−1Ak−1Rk−1), (13)
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where Zk−1, . . . , Z1 are the measurements collected at times be-
tween 1 and k − 1. Assume that at time k the orientation changes
by the application of another random rotation matrix Pk distributed
according to another matrix von Mises-Fisher distribution. Thus the
predicted (prior) orientation is just a product of two random rotations
Rk = PkRk−1. The state dynamics transition probability is written
in terms of distribution of matrix Pk

Pr(Rk|Rk−1) = Pr(Pk;Bk) = α(Bk)eTr(P̂k
T
BkRkR

T
k−1), (14)

where P̂k
T

is a mean and Bk = UBΣBU
T
B is a concentration ma-

trices of the dynamics. The prior distribution of Rk is then

Pr(Rk|Zk−1, . . . , Z1) = α(Bk)α(Ak−1)

∫
SO(3)

eTr(R̂Tk−1Ak−1R)

eTr(P̂k
T
BkRkR

T )[dR].
(15)

All we need now is to approximate this distribution with a matrix
von Mises-Fisher distribution, so that a recursive process can be used
to estimate and track the orientation over time. By the method de-
scribed in the previous section, the first moment of Rk is

Z = UBf(ΣB)UTB P̂kUAf(ΣA)UTA R̂k−1, (16)

where f(ΣB) and f(ΣA) are defined in Eq. (8). The matrix Z in
Eq. (16) can be polar decomposed and written as

Z = UCf(ΣC)UTC R̂k. (17)

Hence, the distribution of Rk is approximated by the following
von Mises-Fisher distribution

Pr(Rk|Zk−1, . . . , Z1) = α(Ck)eTr(Q̂kCkRk), (18)

where Q̂k is a mean, Ck = UCΣCU
T
C is concentration matrix and

ΣC is computed as an inverse of f(ΣC). It is interesting to notice,
that since matrices in Eq. (16) do not in general commute, the mean
of the product of two random ( with von Mises-Fisher distribution)
rotations is not a product of the means of the two rotations.

2.3. Bayesian update

The tracking is performed in some inertial frame identified by sev-
eral inertial objects. The measurements are given by the directional
measurements to these objects. Clearly, at least two separate objects
are needed. For example, in an inertial measurement unit these are
given by the earth gravity and earth magnetic center. Other pos-
sibilities could for example be given by directional measurements
to relatively distant objects, such as buildings, geographic objects
(mountains), stars, etc. The measurements are unit vectors stacked
as columns of matrix Zk. The likelihood function of these measure-
ments Zk is

L(Zk|Rk) = α(XMZTk )eTr(XMZTk Rk), (19)

where columns of the matrix X are reference vectors in a global co-
ordinate system, andM is a diagonal matrix with measurement con-
centration parameters on the diagonal (see [1]). Bayes’ rule enables
computation of the posterior distribution from the measurement like-
lihood and the prior distribution Pr(Rk|Zk−1, . . . , Z1) (Eq. 18);
that is

Pr(Rk|Zk, Zk−1, . . . , Z1) = cL(Zk|Rk) Pr(Rk|Zk−1, . . . , Z1)

= ceTr(XMZTk Rk+Q̂Tk CRk) = α(Ak)eTr(R̂Tk AkRk),
(20)

Fig. 1. The trajectory (normalized) of the end point of x-axis of an
IMU

where the new parameters R̂k and Ak are computed as the polar
decomposition of matrix XMZTk + Q̂TkCk.

3. EXPERIMENTAL RESULTS

An experiment was conducted with measurements from a three-axis
inertial measurement unit (IMU) with a 100 Hz sampling rate; it was
hand held and performed three full rotations around the z-axis, y-
axis, and x-axis of the IMU in turn. The trajectory of the endpoint of
the unit vector in the x-direction is shown in Figure 1. The measure-
ments were processed, for comparison, with an extended Kalman
filter (EKF), implemented to track the Euler angles of the orienta-
tion, and by the SO(3) tracker described here. The position error
for both algorithms is shown in Figure 2. Over 10 seconds of the ex-
periment the position errors are almost the same for both algorithms.
What is interesting, though, is that the error covariance matrix in our
SO(3) tracker remains essentially constant (See Figure 3), but the
EKF’s error covariance matrix shrinks in size rapidly, as it shown in
Figure 4. This behavior is caused by singularities in the Jacobian
for some configurations of Euler angles. Once the error covariance
becomes sufficiently small, the EKF had to be re-initialized. Over
longer time periods the position error for the EKF tends to drift,
whereas the position error in the case of the SO(3) filter remains
consistent.

In a second experiment the IMU was placed on a rotating
turntable, used for playing vinyl discs, at 33.3 rotations per minute
over about 16 minutes with a 100 Hz sampling rate. The position
errors are shown in Figure 5. In particular, it shows the drift of the
EKF.

4. CONCLUSIONS

A tracking algorithm, specifically designed to track orientation
of three dimensional objects, with directional measurements is de-
scribed here. It uses a Bayesian formalism and the matrix von Mises-
Fisher distributions on the rotation group SO(3). A solution for this
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Fig. 2. Position error (m) for both SO(3) and EKF, over time period
of 10 seconds the errors are mostly similar in magnitude

Fig. 3. Error covariance with SO(3) filter, represented at each point
on trajectory by an ellipsoid.

Fig. 4. Log of determinant of error covariance matrix for both
SO(3) and EKF. EKF has been re-initialized four times in 10 second
period

Fig. 5. Position error for the turntable experiment, shows the drift in
EKF

problem is derived using appropriate approximations which, at least
numerically, exhibit essentially no unwarranted assumptions about
the measurements. The resulting tracking algorithm is elegant, fast,
accurate, does not require re-initialization, and can track for long
periods of time. It gives realistic estimates of the spread of the
posterior distribution, and hence a correct level of confidence in the
estimates of the orientation.

Future work will focus on the uninformative nature of the ap-
proximation, and on application to a number of problems including
human motion and orientation of small UAVs.
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