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ABSTRACT

An analytical expression for a probability density is usually required
in detection and estimation problems, yet it is usually only assumed
or selected from contenders by parameter estimation, or the his-
togram is smoothed with an arbitrary window function. In contrast,
given a histogram containing R sample points, we derive a nonlinear
differential equation (NDEQ) whose solution is a maximum entropy
density given constraints that arise from assumptions that the sam-
ples are means of the order statistics of the parent distribution. We
solve the NDEQ for R=1 and approximate the solution for general R
using the fact that order means partition the density into equal prob-
ability regions, which we require to independently be maximum en-
tropy. Finally we show with a Rayleigh density example what errors
may result.

Index Terms— estimation of probability density function; max-
imum entropy; order statistics; histogram

1. INTRODUCTION

Maximum entropy (Maxent) is an optimization technique that is
used to produce analytical functions that have maximum uncertainty
while simultaneously satisfying apriori knowledge. If the unknown
density (pdf) is f(z) and its distribution function (cdf) is F'(x), the
density of the 7-th ordered sample [1] from f(x) is f,)(z), where,
if R is the sample size,

A @ -F@)TT @) M)

folo) = e =niw=m

In the following we maximize the pdf entropy,
H = —/ f(z)log f(x)dx ?2)

by assuming that the samples are the means of the respective or-
der statistics of the parent pdf. The result is a nonlinear differential
equation, which, when R = 1, is linear and an exponential pdf is
the solution. Further, by utilizing the density-partitioning property
of means of order statistics and simply constraining the cdf at the
sample points we produce a piecewise contiguous Maxent solution
and an example when the parent distribution is Rayleigh.
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2. ORDER STATISTIC CONSTRAINTS

2.1. Constraints and implications that the samples are the
means of the order statistics

The entropy H in (2) is to be maximized over f(z) subject to the
constraints

E{m(r)}:/ rfey(r)de =a@y, r=1,2,...,R (3)

where z(,) is the r-th ordered value of {z;},i = 1,2,..., R, and
fey () is the density of x(,y. These constraints are much like those
given in [2], where the moments of x are assumed known. Some
approaches proceed by assuming that the sample moments are the
true moments. We offer an alternative.

The constraints we have chosen also imply that the probability
distribution function will necessarily be equal to /(R + 1) at z(,
([1], sec. 3.1); i.e.,

Flzg) = ()]

r
R+1
This result, (4), may be useful for an initial approximation to F'(x) in
an iterative solution of the differential equation which results from
the general maximum entropy optimization. Further it is possible
to use only these constraints and omit those in (3). However, use
of constraints (3) allows a continuous solution, which encompasses
those constraints in (4) but not vice versa. Excluding constraints
(3) but requiring (4) leads to uniform densities between the samples,
each contiguous (sub-) density having area F'(z(,)) — F(z(,—1)) =
1/(R + 1). That becomes clear when we discard the terms in the
resulting differential equation, (8), arising from (3) and add terms
according to (4). However, how then to adjust for semi-infinite inter-
vals (tails) in the distribution is not clear at this point, though asymp-
totic results from (1) allow possible solutions.

2.2. Area and spread constraints

We also require that f(z) have unit area, and we may possibly con-
strain that var[z] = o®. Finally we require boundary conditions
F(a) = 0,F(b) = 1,a < b, where a and b may be —oco and oo
respectively.

2.3. Derivation of the optimal density function

The R + 2 constraints are appended with Lagrangian multipliers \;
to the functional H to be maximized giving

10 = [ (Go+ 06 do )
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where
—f10§f o Jj=0
Y1 - P 1<j<R
Giw Py =4 AT =2 e
z2f j=R+2

With the boundary condition constraints also applied, Gelfand and
Fomin [3] show that the optimal F'-satisfies

a R+2 d 8 R+2
37 (Go + ; AjG]-) - {W (Go + ; AJGJ)

The required partials are

(O]

0 7=0
FH =1 FaomCGi 1<j<R
0 j=R+1,R+2
—(1+logf) 7=0
¢, ) f'Gy 1<j<R
F — ) 1 j=R+1
z? j=R+2

These partials and their derivatives with respect to = are used in (7)
to give after considerable algebra the following nonlinear differential
equation in F:

" R
TN T (1= P — ez =0 @)
j=1

Alternate forms are given in the extended version of the paper.

2.4. The differential equation with only CDF (i.e., F') constraints
(4) and area =1

If instead of the means integral constraints (3), only the implied val-
ues of F'(x(,) are used for constraints, i.e.,

T(r) r
F(z(y) = / flz)dz = il 9)
then (8) becomes in each interval,
!
f? =0 (10)
and the solutions therein must be the constants
1 Ty < < T(r+1)
= 11
f@) (R+1)(m(r+1)—x(r))’{ r=1,2,...,R an

This is a simple result, adequate, when a continuous solution is not
required. It remains to determine results for the tail.

3. ANALYTICAL SOLUTIONFORR =1

An analytical solution of (8) for R > 1 has not been found. How-
ever, four special cases for R = 1 have been found and are informa-
tive and useful.

1. No constraint on 02, a = 0,b = co. (The density allows val-

ues on the positive real line and we in no way fix the variance
or use it to further maximize the average entropy H).

2. No constraint on 62,0 = —0c0,b = oco. (The density allows
values on the whole real line and we in no way fix the variance
or use it to further maximize H). We do allow one point of
discontinuity in f(x). (See [2]).

3. No constraint on ¢, a, b real and finite.

4. Constrain o2 such that H is further optimized, a = —o0,b =
0.

The differential equation for all four casesis (R =1, R = 1),

{ F" + )\1F’ — 2)\R+2IF, =0, or (12)

f/ + AMf —2Agr42zf =0

For cases 1,2 and 3, Ag+2 = 0 (no o2 constraint):

3.1. Case 1 Solution

Eq. (12) reduces to f'/f = A1 and the constraints lead to the expo-
nential distribution

flx) = { 6\1e‘m A= 1/(zq) —a)

otherwise (13)

3.2. Case 2 Solution
This problem is the same as for Case 1, except that a point of discon-

tinuous f(x) is allowed; f(z) must be continuous. These consider-
ations and the constraints lead to

f(@) = ae”*l* (14)

Not enough is known to determine a.

3.3. Case 3 Solution
The algebra is much as in Case 1 giving

e—Ma _ o=Xib

AL = 15)

$(1) (efkla _ e*)\lb) _ ae*)\la + bef)\lb

from which A1 can be determined numerically once a and b are
given. The density in z is

Aye—Miz
flz) = { —Sh——m7 a<z<b

; (16)
0 otherwise

The corresponding maximum entropy densities for the solutions X\
in (16) are shown in Figure 1.

3.4. Case 4 Solution

Adding the constraint associated with a known variance leads to the
Gaussian density:

1 —(z—=x o
flz) = = (@==(1))?/20 17)
yixea
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Max Ent densities for xr = [0.1:0.1:0.9]
T T

—0.1
——02

Fig. 1. Maximum Entropy densities corresponding to solutions X in (15),
when the domain of « (and x,.)) is normed to (a, b] = (0, 1].

3.5. Asymptotic Solution

Because we are often interested in setting decision boundaries near
extremes of the a-posteriori density, the asymptotes of the density
f(x) are highly important. Therefore, consider again (8) with no
variance constraint (Ar4+2 = 0) and for the cases of a — —o0
or b — oo or both. In those cases we ask what is the differential
equation (8) as x — Foc0. Because

1, j=R, x>
1,j=1,—o00 (18)
0, Otherwise

I (@)1 - F(2)]*7 —

Equation (8) becomes

f'(@) = Arf(z) =0, © — o0 "
F(z) = Mf(x) =0, 2 — —o0 (19)

The solutions for these cases are those of Cases 1 or 2. Le., the max-
ent f(x) is asymptotically an exponential density as if there were
just the single sample, either x (1) or x(g), with the given boundary
conditions (a, b).

However, the Cases 1 and 2 give density solutions for a single
sample. In the general case, R > 1, the asymptotic solution must
incorporate this difference. In particular, the total probability of x
beyond z(p) and below z(1y; P(z < x(1)) or P(z > x(g)) must
equal 1/(R + 1). Thus we must scale the asymptotic solution ac-
cordingly.

4. CONTIGUOUS INTERVAL SOLUTIONS

Because the solution for R = 1 is analytic, we can now use that
solution to support a contiguous solution for f(z) when R > 1, and
the constraints are taken on the cdf as in (4) rather than from the
integrals for the means as in (3). We now use the following notation,
where [-] subscripted in fi,) indicates contiguous indexed density,
not order statistic:

f(:C) = E?:o f[T](':C)7 f[T] = f(.’E), ar < < b
a = aor —oo, r=0 b, = Trp1), 1<r<R—1
zy, 1<r <R boroo, r=R
(20)
The contiguous approach to the solution for the maximum entropy
density is based on the following four points:

1. The samples are assumed to be the means of their respective
order statistics.

2. Assumption 1 implies’ that the density f(z) is a sum of R +
1 mutually exclusive and contiguous densities f,(z), (see
(20)) , each having equal area (probability) 1/(R + 1).

3. Excluding the extreme lower and upper (tail) densities (if
they are not finite), each of the interior contiguous densities
firy(x), 1 < r < R — 1, spans the interval between the or-
dered samples x(,) and T(;41) -

4. The maximum entropy distribution fj,j(x) in a finite interval
with no samples is flat; in that case

fi(@) =1/ [(R+ D) (@(rg1) — 2()] 1)

If either or both the domain extremes are infinite, the tail densities
for —oo < z < x(1) and/or z(r) < T < oo, must be found another
way , as we will now suggest.

4.1. Asymptotic Solutions

Now we ask the question: what about infinite domain extremes? It
is still true that the first and last intervals must each contain a total
probability of 1/(R + 1). Thus from (21)

—B(z—a)
_ e y T(R) <z
fin () { 0, Otherwise (22)
B=1/(xwr)—a), y=¢/(R+1)

A similar argument can be made for an exponential density over the
segment closest to the least value, z = a.

4.2. Examples

We have purposely chosen the Rayleigh density because its large =

asymptote drops off as e’ , much faster than our proposed simple
exponential. Figure 2 shows the Rayleigh density and samples, the
Max entropy approximation out to b = 5, and a Parzen smoothed
histogram density estimate. The z—axis increment dzx is set to 1/40
of the minimum distance between data samples. The Parzen win-
dow size has been chosen to be the maximum of either 40 plot in-
crements or the minimum number of plot increments between closest
samples. The difference between Max entropy and Parzen-smoothed
varies of course with choice of the Parzen window size. The chosen
size here gives some smoothing while also retaining high resolution.
Figure 3 gives an example with R = 9. Note in Figure 3 (b) that
the cdf exactly fits the data, as it is forced to do. However, the Max-
entropy contiguous approximate density gives order statistics that
have 0.1091 standard normalized error from the true Raylegh order
statistics and 0.1832 standard normalized error from the samples

n support of this assumption, we note that ([1], Example 3.1.1) shows
that the means of the order statistics divide the density into R + 1 equally
likely regions. He also notes that only densities which have impulsive parts
at the extremes cannot be addressed this way.
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true pdf, max entropy and 40 —point parzen-smoothed histogram, R = 5
T
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Fig. 2. Rayleigh density and 5 samples Max entropy approximation and a
40 axis-point Parzen smoothed histogram density estimate.

(assumed order statics). More data along these lines can be found

for other densities and R values. The counterpart for a = —oo is
straightforward, since it is symmetrical. The method can be applied
to both tails simultaneously if both a = —occ and b = cc.

5. CONCLUSIONS

A nonlinear differential equation has been derived for the maximum
entropy density function estimate which would yield the R ordered
samples, given in a histogram, assuming that each of those samples
is the mean of its associated order statistic density. An analytical
solution to the NDEQ (8) might yield a continuous density function,
but the solution that meets the alternate constraints (9) may often
be just as useful. It gives flat densities of equal probability weight
between samples. If the domain is infinite, the tail domains cannot
have a flat density, and exponential asymptotic solutions based on
(18) are recommended.

The NDEQ and analytical solutions we have provided may allow
further insights to the problem. Examples are shown to be reasonable
under the assumptions and compare favorably to Parzen smoothing
window estimates. Other fixed window smoothers would have simi-
lar differences from the maxent.
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Fig. 3. Example application, R = 9, tail (essentially to b = oo, with the
exponential density in the last intervals 2 gy < « < oco. The exponential
tail has weight 1/(R+1). In (b) are shown the respective cumulative density
functions and the sample point cdf values.
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