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ABSTRACT

We extend our previous work and present how Bayesian sur-
prise can be applied to detect salient acoustic events. There-
fore, we use the Gamma distribution to model each frequencies
spectrogram distribution. Then, we use the Kullback-Leibler
divergence of the posterior and prior distribution to calculate
how “unexpected” and thus surprising newly observed audio
samples are. This way, we are able to efficiently detect arbi-
trary, unexpected and thus surprising acoustic events. Com-
plementing our qualitative system evaluations for (humanoid)
robots, we demonstrate the effectiveness and practical appli-
cability of the approach on the CLEAR 2007 acoustic event
detection data.

Index Terms— Acoustic event detection, Acoustic
saliency, Cognition, Probability, Algorithms

1. INTRODUCTION

Attention is the cognitive process that has to identify subsets
within sensory inputs that contain important information to
focus subsequent complex and slow processing operations on
the potentially relevant information. This is a key capability in
biological and artificial systems that enables real-time process-
ing despite limited computational capacities. However, as a
consequence, attention has to process all incoming sensory in-
formation (e.g., from the millions of human sensory receptors),
making it computationally challenging. But, since attention
serves as a gateway to later processing steps, efficient, reliable,
and fast attentional allocation is key to efficient processing of
complex natural scenes.

Unfortunately, auditory and acoustic attention has not yet
found its way into as many practical applications as its visual
counterpart (see, e.g., [1–3]). One of the possible reasons
for this could be that only few run-time efficient, reliable,
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and robust models for auditory attention exist that have been
proposed and tested for practical applications. In this paper,
we propose the use of acoustic surprise for the detection of
arbitrary salient acoustic events. In principle, surprise de-
fines important stimuli as statistical outliers given the previous
observations of a signal, which naturally also integrates the
concept of novelty detection. We primarily developed acoustic
surprise to focus the computational resources and control the
overt attention of (humanoid) robots, see Fig. 1, and smart
environments (see [1, 3–5]). In such applications, acoustic
surprise can serve two purposes: First, we can focus audio pro-
cessing and, second, we can actively control the overt attention
(i.e., the sensor orientation) to optimize the scene perception.
For both purposes we profit from the low run-time require-
ments (depending of course on the configuration, calculating
audio surprise requires 1.5 seconds for one minute of audio
recordings, in Matlab), which, first, provide a net benefit of
required computational resources for audio precessing and,
second, allow for the robot’s rapid reaction time on salient
events. However, previously we did not perform a quantitative
evaluation on real-world data and instead focused our evalua-
tions on the behavior of the overall system. In this paper, first,
we propose the use of the Gamma distribution with a forget-
ting factor in place of the Gaussian distribution for surprise
calculation. Second, we perform a quantitative evaluation of
surprise on acoustic event detection data, which quantitatively
demonstrates the practical applicability of our approach.

The remainder of this paper is organized as follows: In the
following section 2, we provide a brief overview of related
work. Subsequently, in section 3, we describe how we calcu-
late the surprise of an audio signal. Then, in section 4, we
present our evaluation results. Finally, we conclude with a
brief summary in section 5.

2. RELATED WORK

In recent years computational models of attention have at-
tracted an increasing interest in the field of robotics (see,
e.g., [1, 2]) and various other application areas (see, e.g., [3,
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Fig. 1. Our robotic target platform: The Karlsruhe Humanoid
Head and the ARMAR humanoid robot (see [18]), which
served as platform for our qualitative system evaluations [1].

6–9]). Although in principle all attention models serve the
same purpose, i.e. to highlight potentially relevant and thus
interesting – that is to say “salient” – data, the vagueness and
task-dependence of this problem description leads to a variety
of models that may differ substantially in which parts of the
signal they mark as being of interest. Unfortunately, in contrast
to the fast growing amount of proposed visual saliency models
(see [10,11]), only few practically applicable models for acous-
tic attention exist (e.g., [1, 6, 7]). Most closely related to our
work is the model described by Kayser et al. [6] which is based
on the well-known visual saliency model of Itti et al. [12] and,
most notably, has been successfully applied to speech process-
ing by Kalinli et al. [7] and, in principle, by Lin et al. [8] to
allow for faster human acoustic event detection through audio
visualization. However, it has several drawbacks: First, it is
computationally expensive, because it requires the calculation
and combination of a considerable amount of feature maps.
Second, it requires that the spectrogram has elements of the
future to detect salient events in the present (due to the in-
herent down-scaling and filtering in Itti et al.’s model, salient
stimuli at the borders are always problematic), which prohibits
online detection. Finally, although Itti et al.’s saliency model
represents an outstanding historical accomplishment, it can
hardly be said to be state-of-the-art (see, e.g., [13–15]). To
account for these drawbacks, we introduced acoustic Bayesian
surprise in 2011 [1]. It relies on a probabilistic model of
the signals’ frequency distribution to calculate the “surprise”,
which in principle measures how unexpected an observed sig-
nal is given the preceding observations [16, 17]. In this paper,
we extend our previous work with respect to two main aspects:
First, we propose the use of the Gamma distribution instead of
the previously applied Gaussian distribution. Second, we pro-
vide a quantitative evaluation, which nicely complements and
substantially adds to our previous, mostly qualitative system
evaluations (see [1, 4, 5]).

3. ACOUSTIC SALIENCY MODEL

In the following, we present our definition of acoustic surprise
that we use to detect acoustically salient events online and in
real-time.

3.1. Time-Frequency Analysis and Bayesian Framework

First, we use the short-time Fourier transform (STFT), short-
time cosine transform (STCT) or the modified discrete cosine
transform (MDCT) to calculate the spectrogram G(t, ω) =
|F (t, ω)|2 of the windowed audio signal a(t), where t and ω
denote the discrete time and frequency, respectively.

In the Bayesian probability framework, probabilities cor-
respond to subjective degrees of beliefs (see, e.g., [19]) in
models which are updated according to Bayes rule as new
data is observed. At each time step t, the new data G(t, ω)
is used to update the prior probability distribution Pωprior =
P (·|G(t− 1, ω), . . . , G(t−N,ω)) of each frequency and ob-
tain the posterior distribution Pωpost = P (·|G(t, ω), G(t −
1, ω), . . . , G(t−N,ω)), where N ∈ {1, . . . ,∞} allows addi-
tional control of the time behavior by limiting the history to
N 6=∞ elements. The history allows to limit the influence of
samples over time and consequently “forget” data, which is
essential for the time behavior of the Gaussian surprise model.

3.2. Acoustic Surprise

3.2.1. Gaussian model

Using the Gaussian distributions as model1, we can calculate
the surprise SA(t, ω) for each frequency

SA(t, ω) = DKL(Pωpost||Pωprior) =

ˆ
Pωpost log

Pωpost

Pωprior

dg (1)

=
1
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+ Tr
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ω
post

]
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ω
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where µ and Σ is the mean and variance, respectively, of
the data in the considered time window, i.e. history. DKL

is the Kullback Leibler Divergence and Eqn. 2 results from
the closed form of DKL for Gaussian distributions (see [20]).
Consequently, an observed spectrogram element G(t, ω) is
surprising if the updated distribution Pωpost, which is the result
of incorporating G(t, ω), differs significantly from the prior
distribution Pωprior.

3.2.2. Gamma model

Similar to the approach by Itti and Baldi for detecting surpris-
ing events in computer vision [21], we can alternatively use
the Gamma distribution

P (x) = γ(x;α, β) =
βαxα−1e−βx

Γ(α)
(3)

with x ≥ 0, α, β > 0, and Gamma function Γ, to calculate the
surprise.

1If you are interested, you can download and experiment with our public
demo implementation, see http://bit.ly/SqDDkn.
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Given a new observation G(t, ω) and prior density
Pωprior = γ(·;α, β), we calculate the posterior Pωpost =
γ(·;α′, β′) using Bayes’ rule

α′ = α+G(t, ω) (4)
β′ = β + 1 . (5)

However, using this update rule would lead to an unbounded
growth of the values over time. To avoid this behavior and
reduce the relative importance of older observations, we inte-
grate a decay factor 0 < ζ < 1

α′ = ζα+G(t, ω) (6)
β′ = ζβ + 1 . (7)

This formulation preserves the prior’s mean µ = α
β = ζα

ζβ but
increases its variance, which however represents a relaxation
of belief in the prior’s precision after observing G(t, ω).

Now, we can calculate the surprise as follows

SA(t, ω) = DKL(Pωpost||Pωprior) =

ˆ
Pωpost log

Pωpost

Pωprior

dg (8)

= α′ log
β

β′
+ log

Γ(α′)

Γ(α)
(9)

+β′
α

β
+ (α− α′)ψ(α) , (10)

where ψ is the Digamma function. Unfortunately, the Gamma
and Digamma functions Γ and ψ, respectively, do not have
a closed form. But, there exist sufficiently accurate approxi-
mations (see, e.g., [22]), which however make the calculation
slightly more complex than in the case of the Gaussian model.

3.3. Across Frequency Combination

Finally, we calculate the acoustic saliency SA(t) as the mean
over all frequencies

SA(t) =
1

|Ω|
∑
ω∈Ω

SA(t, ω) . (11)

We do not use an alternatively possible joint (e.g., Dirich-
let) model for the surprise calculation due to its computational
complexity. Such a joint model would require the calcula-
tion of a general covariance matrix, which given the typically
large number of analyzed frequencies makes it impractical for
real-time processing.

4. EVALUATION

4.1. Evaluation Measure

In contrast to, e.g., recording eye fixations as a measure of
visual saliency (see, e.g., [14]), we can not simply observe
and record humans to provide a measure of acoustic saliency.

Consequently, we follow a pragmatic, application-oriented
evaluation approach that enables us to use existing acoustic
event detection and classification datasets. In summary, salient
acoustic event detection has to suppress “uninteresting” audio
data while highlighting potentially relevant and thus salient
acoustic events. However, in contrast to classical acoustic
event detection and classification, this leads to a different
evaluation methodology in which a high recall is necessary
(i.e., we want to detect all prominent events) whereas a high
precision is of secondary interest (i.e., we can tolerate false
positives as long as we still filter the signal in such a way that
we achieve a net run-time benefit when taking into account
subsequent processing steps). We can realize this evaluation
idea by using the well-established Fβ score

Fβ = (1 + β2) · precision · recall

(β2 · precision) + recall
(12)

Fβ =
(1 + β2) · true pos.

(1 + β2) · true pos.+ β2 · false neg.+ false pos.
(13)

as evaluation measure2, where β “measures the effectiveness
of retrieval with respect to a user who attaches β times as much
importance to recall as precision” [23].

4.2. Evaluation Data

We use the CLEAR2007 acoustic event detection dataset for
evaluation [24], which was supported by the European Inte-
grated project CHIL and the US National Institute of Standards
and Technology (NIST). The dataset contains recordings of
meetings in a smart room. For each recording a human user
marked and classified (14 classes) acoustic events. Here, it is
interesting to note that not all events could be classified by the
human user, in which case they were labeled with “unknown”.

4.3. Evaluation Parameters

For the time-frequency analysis, we set the window size to
contain 1 second of audio data, which has a resolution of
22 kHz, and use 50 % overlap3. We also experimented with
different window functions (e.g., Blackman, Gauss), but the
resulting performance difference between most window func-
tions is relatively small, if the parameters are well defined. We
evaluated the performance for the modified discrete cosine
transform (MDCT), short-time cosine transform (STCT), and

2This procedure is comparable to the use of Fβ for salient object detection
in image processing applications (see, e.g., [15]).

3Please note that the choice of algorithm parameters substantially influ-
ences the performance and run-time (e.g., we were able achieve an F2 score
of 0.9414 at the cost of considerably higher run-time requirements). Since
ICASSP’s page limit does not allow for an evaluation of every parameter’s
influence, we present results for a reasonable parameter configuration. How-
ever, since we make our implementation publicly available, other researchers
will be able to experiment with different configurations that might be more
suitable for their target application.
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Algorithm F1 F2 F4

STFT + Gamma 0.7668 0.8924 0.9665
STCT + Gamma 0.7658 0.8916 0.9655
MDCT + Gamma 0.7644 0.8894 0.9647
STFT + Gaussian 0.7604 0.8832 0.9531
STCT + Gaussian 0.7612 0.8813 0.9529
MDCT + Gaussian 0.7613 0.8805 0.9538

Table 1. Performance of the evaluated acoustic surprise algo-
rithms on CLEAR 2007 acoustic event detection data. The F2

and F4 scores are our main evaluation measure, because for
our application a high recall is much more important than a
high precision (we provide the F1 score mainly to serve as a
reference). As can be seen, the proposed use of the Gamma dis-
tribution improves the performance. Furthermore, this being
the first quantitative evaluation, we can see that the proposed
use of surprise to detect arbitrary, interesting acoustic events
matches our subjective experiences and does indeed perform
well in highlighting (salient) acoustic events.

short-time Fourier transform (STFT) to determine whether or
not the Gamma distribution is beneficial for every of these
transformations. We do this, because one aim is to produce
as little run-time overhead as possible, which requires us to
ideally rely on the transformation that is used for the subse-
quent processing steps such as, e.g., sound source localization,
event recognition, and/or speech recognition. We optimized
the history size and forgetting parameter for the Gaussian and
Gamma model, respectively, and report the results for the best
choice.

4.4. Results

As can be seen in Tab. 1, quantified using the F1, F2, and F4

score, acoustic surprise is able to efficiently detect arbitrary
salient acoustic events. Although in general an F1 score of
roughly 0.77 is far from perfect for precise event detection3,
we can see from the substantially higher F2 and F4 scores that
we can efficiently detect most (salient) acoustic events, if we
tolerate a certain amount of false positives. This nicely fulfills
the target requirements for our application domains and comes
at a low computational complexity that using, e.g., Gaussian
surprise allows us to process one minute of audio data in
roughly 1.5 seconds. Furthermore, the detection of salient
events can be performed online and we can not just detect
salient points in time, but since we calculate the surprise value
all frequencies that we subsequently combine, we can also
determine which frequencies trigger the detection. We also
see that the proposed use of the Gamma distribution provides
a better performance compared to the Gauss distribution, see
Tab. 1. This is consistent over all considered transformations
and with our experience on other parameter configurations3. It
is also interesting to see that the chosen transformation only
has a minor influence on the achievable performance.

5. CONCLUSION

We have extended our previous work on acoustic surprise.
Most importantly, we introduced the use of the Gamma dis-
tribution in combination with a “forgetting” factor. Comple-
menting our previous experiments in which we focused on the
behavior of the system (i.e., a humanoid robot) as a whole,
we have demonstrated that acoustic surprise performs well in
detecting arbitrary acoustically salient events using acoustic
event data from the CLEAR 2007 corpus. We would like to
note that this performance comes with a low computational
complexity, which is a key feature that makes the integration
of auditory attention into an actual system beneficial.
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