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ABSTRACT

In this work, we present POUTINE, a novel estimator of
the auto-correlation function (or more generally, the cross-
correlation function) of ergodic stationary signals, an impor-
tant task in a variety of applications. This estimator sparsely
and non-adaptively samples the process via Bernoulli selec-
tion, generalizing the classical estimator in a natural way, and
offering significant sampling reductions while sacrificing a
modest degree of accuracy. Both the mean and variance of our
estimator are explicitly analyzed, and in particular, we show
that POUTINE gives an unbiased estimate of the classical
estimator, which in turn gives an unbiased estimate of the un-
derlying second-order statistics of interest. Furthermore, we
show that POUTINE is a consistent estimator with variance
approaching zero asymptotically. We demonstrate favorable
performance of this approach for a simple stochastic process.

Index Terms— POUTINE, sparsity, ergodicity, non-
adaptive measurements, cross-correlation

1. INTRODUCTION

Correlation-based methods [1] are effective techniques for
characterizing the statistical properties of signals and sys-
tems. In many applications, one is interested in evaluating
the power spectrum of a random signal, which is the Fourier
transform of its auto-correlation. The power spectrum pro-
vides useful information about the expected power of a signal
at each frequency in the spectrum. Spectral estimation can
be used for speech analysis, pattern recognition, seismology,
communications, radar, and sonar [2].

While auto-correlation is essential for spectral estimation,
cross-correlation has recently generated much interest as a
powerful tool for system characterization. For example, the
cross-correlation of ambient noise signals in a multi-channel
observation system can be used to estimate the Green’s func-
tion of the wave equation in an inhomogeneous medium. This
idea can be used for travel-time estimation, passive sensor
imaging of reflectors, and structural health monitoring [3, 4].

In general, the cross-correlation between two random,
uniformly-sampled signals x(1), x(2) is defined as

Rx(1)x(2)(n1, n2) = E
{
x(1)[n1]x(2)[n2]

}
.

For stationary ergodic signals, the cross-correlation only de-
pends on the time difference τ = n2 − n1.

Earlier theoretical results [5] have shown that random
sampling strategies can accurately estimate the cross-correlation
function regardless of the temporal spacing between the sam-
ples. In practice, small data sets can be processed in batch
mode. For larger datasets, or in streaming data applications,
partial correlation estimates can be generated by processing
windows of the input data. For two ergodic input signals x(i),
i = 1, 2, we first split each signal into W length-N obser-
vation windows, i.e., x(i) =

[
x
(i)
1 , x

(i)
2 , ..., x

(i)
W

]
, where x(i)w

is the w-th segment of x(i). The empirical cross-correlation
between the signals in window w is defined as

R̂
x
(1)
w x

(2)
w

(τ) =
1

N − |τ |

N∑
n=1

x(1)w [n]x(2)w [n+ τ ]

where we use the convention that x(i)w [k] = 0 for indices k
outside the window. This can be written in matrix form as

R̂
x
(1)
w x

(2)
w

(τ) =
1

N − |τ |
x(1)w Sτx(2)w ,

where Sτ is the time-shift operator.1 The classical cross-
correlation estimate can then be formed as an average over
the correlations within each window

R̂x(1)x(2)(τ) =
1

W

W∑
w=1

R̂
x
(1)
w x

(2)
w

(τ). (1)

In practical applications, architectural or temporal con-
straints might necessitate the compressive measurements of
the signals of interest. The recent field of compressive sens-
ing [6] studies how signals can be robustly acquired using
such dimensionality-reducing operators Φ. Theoretical re-
sults in the field have shown that such a process could retain
the relevant information of the original signal, even when Φ
is highly under-determined. For instance, when the signal is
sparse, it can be recovered exactly from its compressed mea-
surements for a wide class of measurement operator Φ.

In this work, we present POUTINE: a Partially-Observing
Unbiased Time-Integrating Non-Adaptive Estimator, which

1Note that Sτ is linear shift instead of a circular shift.
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estimates the cross-correlation of ergodic signals that have
been observed by a random, sparse subsampling operator Φw
within every window w. The measurements of the windowed
segments are denoted y(i)w = Φwx

(i)
w . Contrary to classical

compressive sensing, we do not assume that the signals them-
selves are sparse. We show that the POUTINE estimator (de-
fined carefully in Section 2) provides an unbiased and consis-
tent estimation of the classical cross-correlation. This implies
that even from highly under-sampled observations of the sig-
nals, we can obtain an estimator that performs in average as
well as the classical estimator that uses all the samples. Al-
though the random operator Φw is different for each window
observation, our technique is non-adaptive and does not rely
on any signal property other than its ergodicity.

2. APPROACH

In this section, we describe the POUTINE estimator that es-
timates the cross-correlation of two ergodic stationary sig-
nals x(1), x(2) from their undersampled measurements in each
window. Specifically, we non-adaptively observe each sample
of x(i)w for i = 1, 2 with probability ρ. The observations can
be compactly expressed y(i)w = Φwx

(i)
w for i = 1, 2.

The estimator proceeds as follows. First, we pad the un-
known entries of the signals in each window with zeros. Thus,
we use x̃(i)w := Φ∗wy

(i)
w . Then, the POUTINE estimator of

Rx(1)x(2)(τ) is defined as

R̃x(1)x(2)(τ) =
1

W

W∑
w=1

R̃
x
(1)
w x

(2)
w

(τ),

over the range |τ | ≤ N − 1 where

R̃
x
(1)
w x

(2)
w

(τ) = α(τ)
N∑
n=1

x̃(1)w [n]x̃(2)w [n+ τ ]

and

α(τ) =
1

N − |τ |

{
ρ−1 when τ = 0

ρ−2 when τ 6= 0.

Note that when the sampling matrix Φw is the identity (i.e.,
ρ = 1), the POUTINE estimator reduces to the classical esti-
mator (1). The following theorem shows that the POUTINE
estimator is unbiased and consistent with respect to the clas-
sical cross-correlation estimator.

Theorem 1. The POUTINE estimator of the cross-correlation
of two ergotic signals x(1), x(2) satisfies

E
{
R̃x(1)x(2)(τ)

}
= R̂x(1)x(2)(τ), (2)

and

Var
(
R̃x(1)x(2)(τ)

)
=

1

W

(
ρ−β(τ) − 1

)
×

N∑
n=1

(
x(1)w [n]

)2 (
x(2)w [n+ τ ]

)2
, (3)

where β(0) = 1 and β(τ) = 2 for τ 6= 0.

From this theorem, we can make two observations about
the POUTINE estimator. First, the expected value of the
estimator is equal to the classical estimator of the cross-
correlation. In particular, the POUTINE estimator gives an
unbiased estimate of the classical estimator (with respect to
randomness in Φ), and the classical estimator gives an unbi-
ased estimate of the actual cross-correlation function (with
respect to randomness in the process itself). By the tran-
sitivity of iterated expectations, the POUTINE estimator is
itself an unbiased estimate of the actual underlying cross-
correlation function. Also, through ergodicity and in the
limit of large W , the classical estimator approaches the true
cross-correlation function asymptotically as W →∞.

Second, (3) shows that the estimator is consistent, mean-
ing that the variance of our estimator goes to zero as the num-
ber of drawn samples increases. This occurs when the num-
ber of windows W increases or when the compression ratio ρ
goes to one.

3. RESULTS

In this section we compare the POUTINE estimate with the
classical estimate generated from the complete set of samples.
For this purpose we synthesize an ergodic wide-sense station-
ary (WSS) signal x(1) and its time-delayed counterpart x(2)

using a first order auto-regressive model as:

x(1)[n] = Cx(1)[n− 1] +Dg[n] (4)
x(2)[n] = x(1)[n− 20] (5)

where g[n] ∼ N (0, 1), C = e−3/200, and D =
√

1− C2, so
that x(i)[n] ∼ N (0, 1). Here we use W = 300 windows each
of length N = 200 to compute the cross-correlation.

For the POUTINE estimate, we use a sparse non-adaptive
selection of the samples. Specifically, in every window, a par-
ticular sample is drawn with probability ρ, which leads to an
average sample count of ρN per window.

Figure 1 shows the result of estimating this cross-correlation
classically (i.e., with ρ = 1) and compressively using POU-
TINE. We respectively denote them as R̂x(1)x(2)(τ) and
R̃x(1)x(2)(τ). The classical approach uses all samples within
each window, and POUTINE uses approximately ρ = 10% of
the available samples. The blue line in represents the classical
estimate and the green dots represent the POUTINE estimate,
which forms a good approximation to the classical estimate.
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Fig. 1. Estimates for both classical R̂x(1)x(2)(τ) and POU-
TINE R̃x(1)x(2)(τ) estimates of the true cross-correlation
Rx(1)x(2)(τ)

Figure 2 shows the relative root mean-squared errors
(RMSE) of POUTINE (E(τ)) for several values of ρ, calcu-
lated as:

E(τ) =

√
E
{
|R̃x(1)x(2)(τ)−Rx(1)x(2)(τ)|2

}
Rx(1)x(2)(τ)

. (6)

The curve for ρ = 1 is the classical estimator (i.e. when all
samples are retained). It is apparent that as ρ increases, the
RMSE of the POUTINE estimate approaches that of the clas-
sical estimate. For ρ = 0.5, which corresponds to roughly
using half the samples in each window, the RMSE is reason-
ably close to the classic estimate.

4. DISCUSSION

In this paper, we presented the POUTINE estimator R̃x(1)x(2)(τ
that accurately estimates the cross-correlation of two station-
ary and ergodic signals x(1), and x(2) for substantial sub-
sampling ratios. This data reduction may facilitate the use
of cross-correlation techniques in a wider variety of appli-
cations. We further showed that this estimate is unbiased
and consistent with respect to the classical cross-correlation
estimator. R̂x(1)x(2)(τ).

We foresee many extensions to our approach and results.
First, we assumed a non-adaptive subsampling architecture
for each time window of the signal. An adaptive measurement
process that acquires future measurements based on past mea-
surements may further reduce the compression ratio ρ with-
out incurring any loss of the estimator unbiasedness or consis-
tency. Moreover, it is possible that other types of subsampling
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Fig. 2. Relative root mean-square error (RMSE) for both clas-
sical (dashed red) and POUTINE estimates for compression
ratios of ρ= 0.1 and 0.5

architectures (e.g., random demodulator [7]) can be used in
place of the sparse-sampling architecture proposed here.

5. PROOFS

5.1. Unbiased Estimator

First, we want to show that the POUTINE estimator is un-
biased, i.e., E

{
R̃
x
(1)
w x

(2)
w

(τ)
}

= R
x
(1)
w x

(2)
w

(τ) for every w.
Observe that

R̃
x
(1)
w x

(2)
w

(τ) = α(τ)
〈

Φ∗wΦwx
(1)
w , SτΦ∗wΦwx

(2)
w

〉
= α(τ)

(
x(1)w

)∗
Φ∗wΦwS

τΦ∗wΦwx
(2)
w ,

and

Φ∗wΦw =

N∑
n=1

εnEn,

where En is a zero matrix with a ‘1’ on the n-th diagonal
element and

εn =

{
1 w.p. ρ,

0 w.p. 1− ρ.

With this, note that

E {εnεn′} =

{
ρ when n = n′,

ρ2 when n 6= n′.
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Now, rewrite

Φ∗wΦwS
τΦ∗wΦw =

(
N∑
n=1

εnEn

)
Sτ

(
N∑

n′=1

εn′En′

)

=

N∑
n,n′=1

εnεn′EnS
τEn′

Taking expectation over the random vector ε, we get

E
{
R̃
x
(1)
w x

(2)
w

(τ)
}

= α(τ)
(
x(1)w

)∗ N∑
n,n′=1

E {εnεn′}EnSτEn′

x(2)w

=

α(τ)ρ
(
x
(1)
w

)∗
Sτx

(2)
w when τ = 0

α(τ)ρ2
(
x
(1)
w

)∗
Sτx

(2)
w when τ > 0

=
1

N − |τ |

(
x(1)w

)∗
Sτx(2)w = R̂

x
(1)
w x

(2)
w

(τ).

because when τ = 0, all the non-zero entries of Sτ lie only
on the diagonal while when τ 6= 0, all the non-zero entries
of Sτ will lie only on the off-diagonal. This shows that the
POUTINE estimator is unbiased.

5.2. Consistent Estimator

We now show that the estimator is also consistent, meaning
that the variance of the estimator goes to zero as the num-
ber of drawn samples increases (either with an increase in the
number of windows W , or an increase in the compression ra-
tio ρ). The variance of the POUTINE estimator can be written
as

Var

(
1

W

∑
w

R̃
x
(1)
w x

(2)
w

(τ)

)
=

1

W 2

∑
w

Var
(
R̃
x
(1)
w x

(2)
w

(τ)
)

=
1

W
Var

(
R̃
x
(1)
1 x

(2)
1

(τ)
)

where we used the fact that the measurement operators Φw
are i.i.d.. The variance over one window can be expressed as

Var
{
R̃
x
(1)
w x

(2)
w

(τ)
}

=E
{
R̃
x
(1)
w x

(2)
w

(τ)2
}

− E
{
R̃
x
(1)
w x

(2)
w

(τ)
}2

.

The second term was computed in Section 5.1. The first term
can be computed as follows.

E
{
R̃
x
(1)
w x

(2)
w

(τ)2
}

= E
{∣∣∣α(τ)

〈
Φ∗wΦwx

(1)
w , SτΦ∗wΦwx

(2)
w

〉∣∣∣2}

= α(τ)2E


∣∣∣∣∣∣
∑
n,n′

εnεn′

(
x(1)w

)T
EnS

τEn′x(2)w

∣∣∣∣∣∣
2


= α(τ)2E


∣∣∣∣∣∑
n

εnεn+τx
(1)
w [n]x(2)w [n+ τ ]

∣∣∣∣∣
2


= α(τ)2E
{∑
n,k

εnεn+τ εkεk+τx
(1)
w [n]

× x(2)w [n+ τ ]x(1)w [k]x(2)w [k + τ ]

}
= α(τ)2

∑
n,k

E {εnεn+τ εkεk+τ}x(1)w [n]

× x(2)w [n+ τ ]x(1)w [k]x(2)w [k + τ ].

Simple calculations show that

E {εnεn+τ εkεk+τ} =


ρ when n = k and τ = 0

ρ2 when n 6= k and τ = 0

ρ2 when n = k and τ 6= 0

ρ4 when n 6= k and τ 6= 0.

Plugging this back and using the expression for the expecta-
tion in Section 5.1, we obtain two cases. When τ = 0, we
have

Var
(
R̃
x
(1)
w x

(2)
w

(0)
)

=
1

(N − |τ |)2

(
1

ρ
− 1

)
×
∑
n

(
x(1)w [n]

)2 (
x(2)w [n]

)2
When τ 6= 0, we have

Var
(
R̃
x
(1)
w x

(2)
w

(τ)
)

=
1

(N − |τ |)2

(
1

ρ2
− 1

)
×
∑
n

(
x(1)w [n]

)2 (
x(2)w [n+ τ ]

)2
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