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ABSTRACT

This contribution deals with robust carrier phase tracking in Global
Navigation Satellite Systems, where the ultimate goal is to obtain
accurate and robust phase estimates under non-nominal conditions,
such as high dynamics, strong fading and ionospheric scintillation.
Within this framework, an Interacting Multiple Model approach, us-
ing a bank of parallel Kalman-based filters with different dynamic
state models, is proposed to cope with signals corrupted by severe
ionospheric scintillation. In the proposed formulation, the time-
varying and correlated scintillation phase is introduced into the dy-
namic system using an AR(1) model. Simulation results are pro-
vided to show the enhanced robustness and improved accuracy of
the proposed approach, with respect to state–of–the–art carrier phase
tracking techniques.

Index Terms— GNSS, robust tracking, ionospheric scintilla-
tion, carrier phase, interactive multiple models.

1. INTRODUCTION

The problem under study concerns the derivation of efficient and ro-
bust methods for carrier phase tracking in Global Navigation Satel-
lite Systems (GNSS), considering harsh propagation environments
(i.e., non-nominal propagation conditions), where the signal may be
affected by high dynamics, shadowing, strong fadings, multipath ef-
fects or ionospheric scintillation. Among these propagation condi-
tions, the ionospheric scintillation is certainly the most challenging
one due to the combination of both fading and rapid phase changes,
in a simultaneous and random manner [1]. Moreover, the fact that
scintillation effects are typically unnoticed for mass-market GNSS
receivers has led this effect to receive rather little attention in the
signal processing literature. These are the reasons why this contri-
bution mainly focuses on the robust carrier phase estimation problem
under scintillation conditions.

The synchronization in GNSS receivers is typically carried out
following a two-steps approach: acquisition and tracking. The first
stage gives a coarse estimate of the synchronization parameters, and
the second one refines these estimates, filtering out noise and track-
ing any possible time-variation. The carrier phase tracking tech-
niques implemented in conventional GNSS receivers rely on well
known phase-locked loop (PLL) architectures [2]. The problem of
standard PLLs is the existing tradeoff between noise reduction and
dynamic range, which is driven by the bandwidth and order of the
loop. These two parameters are the ultimate factors that control the
phase tracking jitter and stress error: a small bandwidth is needed
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to be able to filter out the noise and track signals with low carrier to
noise ratios (C/N0), and a large bandwidth has to be used to cope
with high dynamics (i.e. fast variations on the parameters of inter-
est). These techniques have been shown to deliver poor estimates or
even fail under harsh propagation conditions [3, 4].

On the basis of conventional PLL architectures, some improve-
ments have been proposed in the literature: hybrid architectures cou-
pling the PLL with a frequency-locked loop (FLL) to reduce the
dynamics of the signal to be tracked [5], then being able to use a
smaller bandwidth; wavelet denoising techniques to reduce the noise
affecting the system [3], then being able to use large bandwidths
to track high dynamics; adaptive methods that sequentially adapt
the bandwidth of the system according to the actual working con-
ditions, based on the estimation of some performance metrics [6, 7],
or Kalman filter (KF)-based tracking techniques [8], where the filter
is automatically adjusted so as to minimize the mean square error.

Standard KFs, which are formulated from an optimal filtering
approach, have been shown to improve all the methods based on
PLL architectures previously mentioned [3, 4, 9, 10], and that is why
these methods are in the core of all the advanced carrier phase track-
ing techniques. The problem of KFs and other Bayesian filters, such
as Particle Filters (PFs) [11,12] and Sigma-point KFs (SPKFs) [13],
is that the performance obtained depends on the accuracy of the dy-
namic model being assumed and the a priori fixed system parame-
ters, so these methods are not able to adapt to time-varying condi-
tions. To overcome the latter, a further improvement of KF-based
methods are the so-called Adaptive KFs (AKFs) [14], which se-
quentially adapt the filter parameters (e.g., the covariance matrix of
the measurement noises) to the actual working conditions [15, 16].
These methods still rely on a specific dynamic model, which defines
the evolution of the parameters of interest (e.g., the carrier phase),
and thus, they do not provide a robust solution to time-varying sce-
narios.

In this contribution, to overcome the problems previously dis-
cussed, and inspired by the use of Interacting Multiple Models
(IMMs) in target tracking, navigation and high dynamics applica-
tions [17–19], an IMM approach is proposed to deal with robust
carrier phase tracking under scintillation conditions. Standard IMM
applications use a bank of KFs, each one designed to track a given
dynamics. In the problem at hand and depending on the scintillation
intensity, the scintillation effect may be characterized by different
operation regions. For instance, one may consider 3 regions: low,
moderate and severe scintillation. In the proposed formulation,
the time-varying and correlated scintillation phase is introduced
into the dynamic system using an AR(1) model, and then, several
models are considered, each one designed to cope with a different
scintillation region and the corresponding different effects on the
incoming signal. The different filters implemented (one for each
branch of the IMM) are able to track the carrier phase corrupted by
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a given level of scintillation (i.e., lying in a specific region). The
IMM merges the results delivered by the different filters to obtain an
improved estimate, and to correctly deal with the changing working
conditions.

The paper is organized as follows: Section 2 introduces the iono-
spheric scintillation and its effects on carrier phase. The GNSS car-
rier signal model is given in Section 3. Section 4 proposes a robust
IMM solution for GNSS carrier phase tracking, and an example of
the proposed method to deal with scintillation corrupted scenarios is
given in Section 5.

2. IONOSPHERIC SCINTILLATION

Ionospheric scintillation is the name given to the disturbance caused
by electron density irregularities along the propagation path through
the ionosphere. These irregularities affect the GNSS signals with
amplitude fades and phase variations. An important feature of the
scintillation effect is the existing correlation between deep amplitude
fades and phase variations, the so-called canonical fades. That is, the
largest amplitude fades are usually associated with half-cycle phase
jumps [1].

The fact that the scintillation effects are typically unnoticed
for mass-market GNSS receivers, whose dominant degradations are
caused by thermal noise and multipath reflections, has led this effect
to receive little attention in the signal processing literature. For
instance, most of the existing contributions related to scintillation
are focused on very specific scientific applications and are often
of limited applicability in GNSS signal processing applications.
The purpose of this section is to introduce a simple effective signal
model to represent the behavior of scintillation onto the GNSS re-
ceived signal samples, which is based on the Cornell Scintillation
Model [20].

2.1. Scintillation model

In terms of the complex-valued baseband received signal, x(t), the
presence of scintillation can be modeled as a complex-valued multi-
plicative channel,

x(t) = ξs(t)s(t), (1)

where, s(t) is the complex-valued baseband equivalent of the trans-
mitted signal (i.e., the signal of interest), and the complex-valued
stochastic process representing the presence of scintillation (i.e.,
scintillation complex gain) is defined as,

ξs(t) = ρs(t)e
jθs(t), (2)

with the corresponding envelope and phase components, ρs(t) and
θs(t), respectively. Because of the interdependence that exists be-
tween both magnitudes (i.e., amplitude and phase) which is appar-
ent in the presence of canonical fades [21], the characterization of
their individual distributions, widely used in the literature, is not a
valid approach. Some recent contributions [20, 22] have introduced
a method called the Cornell Scintillation Model (CSM) to synthe-
size realistic scintillation, based on a statistical model and the proper
shaping of the spectrum of the entire complex scintillation signal.

The strength of amplitude scintillation is described by the so-
called scintillation index S4, and is usually considered within three
main regions: weak, moderate and strong/severe scintillation [20];

and is defined as

S4 =

√
E(ρ4

s)− (E(ρ2
s))2

(E(ρ2
s))2

 S4 ≤ 0.3 (weak)
0.3 < S4 ≤ 0.6 (moderate)
0.6 < S4 (severe)

(3)
The envelope of this amplitude scintillation is typically modeled as
a Nakagami-m random variable [23], but the experimental results
in [20] show that a simpler Ricean distribution can also be used,
while preserving a close fit with empirical data. This is a very con-
venient approach for simulation purposes, because it means that the
complex-valued scintillation ξs(t) can easily be modeled as a Gaus-
sian random variable with a given autocorrelation Rξs(τ),

ρs ∼ Ricean(Kρs ,Ωρs)→ ξs ∼ N (µρs , σ
2
ρs), (4)

with the following parameters: Kρs =
µ2
ρs

2σ2
ρs

, Ωρs = µ2
ρs + σ2

ρs ,

µρs = E(ρs) and σ2
ρs = E(ρ2

s) − (E(ρs))
2. Notice that for the

simulation of a scintillation data set only two parameters must be
specified, {S4, τ0}, which determine, respectively, the intensity and
correlation of the scintillation complex gain components. In general,
higher S4 and lower τ0 lead to more severe scintillation, where the
ranges of possible values are, respectively, 0 < S4 ≤ 1 and 0.1 ≤
τ0 < 2 (seconds) [20].

The CSM has been embedded in the so-called Cornell Scin-
tillation Simulation Matlab toolkit, which is available at http :
//gps.ece.cornell.edu/tools.php. This software will be used in
the computer simulations to generate the desired scintillation effect
and then assess the performance of the proposed method.

2.2. Scintillation phase modeling using an AR(1) process

In order to embed into the state-space model the scintillation ef-
fect on the carrier phase, a proper model for this phase evolution
is needed. In the CSM model previously discussed the components
of the scintillation complex gain are correlated, and obtained in the
simulator via a second-order low-pass Butterworth filter [20].

For severe scintillation, which is the most challenging scenario
for current state-of-the-art carrier phase tracking techniques, the cor-
relation in the scintillation phase can be fairly modeled using an
AR(1) process. The general AR(1) model for a discrete sequence
zk is specified by the following recursion,

zk = βzk−1 + ηk, (5)

where ηk is a white Gaussian noise sequence with variance σ2
η . The

coefficient β and the variance σ2
η can be obtained throught the Yule-

Walker equations [24], using the autocorrelation function of the se-
quence zk, which is denoted, for an autocorrelation lag m, Rzz(m).
For an AR(1) process, the required parameters can easily be ob-
tained as,

β =
Rzz(1)

Rzz(0)
; σ2

η = Rzz(0)− βRzz(1). (6)

Using the scintillation time histories generated with the CSM,
these parameters have been computed and the AR(1) model has
been validated. For instance, considering a severe scintillation sce-
nario and a sampling rate fs = 0.1 kHz (integration time Ts = 10
ms), the following parameters were obtained:{

S4 = 0.8
τ0 = 0.1

→
{
β = 0.914
σ2
η = 0.08

. (7)

The state-space formulation including the AR(1) model is detailed
in Section 3.2.
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3. SIGNAL MODEL

3.1. GNSS signal model

The baseband analytic representation of a signal received from a
generic GNSS satellite can be expressed as

x(t) = Px(t)d(t− τ(t))c(t− τ(t))ej(2πfd(t)+θe(t)) + w(t), (8)

where Px(t), d(t), c(t) and w(t), stand respectively for the signal
amplitude, the navigation message, the spreading code and and the
noise term, which may include the thermal noise, signals from the
same or other satellites, replicas of the transmitted signal due to mul-
tipath, and any other interference. The synchronization parameters
are the code delay, τ(t), the carrier Doppler frequency shift, fd(t),
and the carrier phase, θe(t). The digitized signal (sampling period
Ts) at the output of the radio frequency (RF) front-end feeds the dig-
ital receiver M channels. The goal of each channel is to acquire and
track the signal of a single satellite.

After the acquisition stage, which provides the first code delay
and Doppler shift estimates, respectively, τ̂(t) and f̂d, the sampled
signal is correlated with a locally-generated replica and then accu-
mulated over the integration period Ts. The samples at the output of
the correlators are usually expressed as

yk = AkdkR(∆τk)
sin(π∆fd,kTs)

π∆fd,kTs
ej(2π∆fd,kTs+∆θe,k) + nk,

(9)
where k stands for the discrete time tk = kTs, Ak is the signal
amplitude at the output of the correlators after accumulation over
Ts, dk is the data bit, R(·) is the code correlation function and
{∆τk,∆fd,k,∆θk} are, respectively, the code delay, Doppler shift
and carrie phase errors.

Taking into account the problem at hand, which is to focus on
the study of the carrier phase estimation problem under scintillation
conditions, a simplified signal model can be considered to take into
account only the carrier phase tracking stage. The simplified signal
model do not include the spreading code and a perfect code delay
estimation is assumed, ∆τk = 0. Moreover, it is also considered
that no data bits are present in the received samples (i.e., this is the
case when using pilot signals or a data wipe-off technique has al-
ready been implemented), and that the attenuation factor is negligi-
ble, sinc(∆fd,kTs) ≈ 1. Under these assumptions, the samples at
the input of the carrier phase tracking stage are given by

rk = αke
jθk + nk, (10)

where the amplitude, αk, may include the scintillation amplitude ef-
fects, αk = Akρs,k ; and the carrier phase, θk, includes the phase
variations due to the receiver’s dynamics, θd,k, and the scintillation
phase variation, θs,k. In the following section, a state-space formu-
lation is proposed.

3.2. State-space model

In the carrier phase tracking problem, considering that the input to
the tracking block is given by eq.(10), the parameter of interest is the
phase θk, which includes the time-varying evolution caused by the
receiver dynamics and the possible scintillation effect.

• Concerning the phase evolution due to the receiver dynamics,
the following model is considered,

θd,k = θ0 + 2π

(
fd,kkTs +

1

2
ḟd,kk

2T 2
s

)
, (11)

where θ0 (rad) is a random constant phase value, fd,k (Hz)
is the carrier Doppler frequency shift and ḟd,k (Hz/s) the
Doppler frequency rate (i.e., the Doppler frequency shift
dynamics).

• The model for the phase fluctuations due to the scintillation
has already been introduced in Section 2.2 and reads

θs,k = βθs,k−1 + ηk (12)

where ηk is a white Gaussian noise with variance σ2
η . Both,

the parameter of the AR(1) process, β, and the variance of
the process driving noise are determined via simulation from
scintillation time histories obtained with the CSM.

From the previous results, a state evolution model considering
both effects can be defined. Considering that the state to be tracked

is xk
.
=
[
θd,k fd,k ḟd,k θs,k

]T
, where the phase is expressed in

cycles, the process equation is

xk =


1 Ts T 2

s /2 0
0 1 Ts 0
0 0 Ts 0
0 0 0 β

xk−1 + vk, (13)

where the transition matrix is denoted F and the process noise, vk ∼
N (0,Q), stands for possible uncertainties or errors on the state tran-
sition model. The process noise covariance matrix is designed ac-
cording to the problem at hand and depending on the system working
conditions. The general formulation is

Q =

(
GGTσ2

j 0
0 σ2

η

)
, (14)

where G =
[
T 3
s /3, T

2
s /2, Ts

]T and σ2
j is the Doppler frequency

rate error variance. Equations (10) and (13) define the state-space
formulation of the problem.

4. INTERACTIVE MULTIPLE MODELS FOR ROBUST
CARRIER PHASE TRACKING

Using the state-space formulation given in the previous section, it is
easy to construct a KF to solve the carrier phase tracking (i.e., esti-
mation) problem. The KF gives the optimal estimate of the posterior
distribution in linear Gaussian systems, which is computed following
a two-step approach: time update (i.e., prediction) and measurement
update (i.e., correction). Due to the lack of space the well-known KF
equations [25] are not detailed, but some comments on the derivation
are given in the sequel.

First, note that measurements rk (eq.(10)) are not used directly
in the filter implementation, but instead go through a discriminator to
obtain the noisy phase measurements, similar to a conventional PLL-
like architecture. In our case, the four quadrant arctangent was used,
which is the Maximum Likelihood estimator in the absence of data
bits. This allows to use a traditional KF and avoids the derivation
of suboptimal nonlinear solutions. Then, the Kalman gain, Kk, is
computed using the variance of the measurement noise, which must
be specified. An expression for the approximated variance of the
phase noise at the output of the discriminator is

σ2
nθ =

1

8π2C/N0Ts

(
1 +

1

2C/N0Ts

)
. (15)
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3.5. Kalman filter-based tracking architecture 33

3.5 Kalman filter-based tracking architecture

As it was introduced in Section 3.3, different Kalman filter-based tracking architectures can

be found in the literature, based on the traditional architecture described in Section 3.4. The

architecture chosen is presented in this section.

The goal of our tracking architecture is to directly estimate the signal parameters instead of

the signal parameter errors obtained after the correlation. Thus, the estimated parameters will

be used directly to generate the replica signal r̂k. This operation simplifies the implementation

complexity, and the resulting architecture follows the option 4 introduced in [Won09], and shown

in Figure 3.1. This architecture can be interpreted as analogous to the extended Kalman filter

(EKF) due to the non-linear measurement function h(xk), shown in Figure 3.4.

F

+

Signal generator
h (xk)

z−1

εk = xk − x̂k

r̂k(x̂k)
xk|k−1

xkrk(xk)
Incoming

signal
Corrected

state vector

+

+
Disc. Kk×

Replica
signal

Figure 3.4: Kalman filter-based tracking diagram.

Despite of the EKF analogy, it should be remarked that the conversion from the estimated

state vector x̂k to the replica signal r̂k is done by the code and carrier generator, which are

already implemented in traditional tracking loops. Moreover, the combination of the correlation

operation and the discriminators is equivalent to the difference between the current state vector

xk and the estimated x̂k, thus resulting in the natural procedure of the linear KF. In the following

sections, the implementation of this architecture is discussed.

3.5.1 System dynamic model

Taking into account the signal model described in Section 3.2, the system dynamic model is

formulated based on the main parameters to estimate, which describe the incoming signal rk are

the code delay τ (in chips), the carrier phase φ (in cycles) and the carrier Doppler frequency shift

f (in Hz). Nevertheless, the carrier Doppler frequency rate ḟ (in Hz/s), which is the derivative

of f , is also present due to the acceleration along the line-of-sight (LOS) between the satellite

and the receiver. Therefore, the state vector is defined by the estimation of the above-mentioned

Fig. 1. Block diagram of the KF-based phase tracking method [26].

And finally, the Doppler frequency rate error variance was set to
σ2
j = 1.579 · 10−10

(
(rad/sample2)2

)
. The block diagram of this

KF-based method is sketched in Figure 1 [26].
The general IMM structure and formulation is not detailed due

to the lack of space, see [17] and references therein for a complete
discussion on IMMs. The main idea behind the IMMs is to overcome
the main problem of stand-alone KFs, which is the a priori fixed pro-
cess equation (i.e., fixed dynamic model) and fixed system parame-
ters, following a divide and conquer strategy to deal with chang-
ing scenarios using several easier fixed operation KFs. The IMM is
compound of four main parts: first, a prediction of the model proba-
bilities is computed. Then, each filter runs taking into account these
mixing probabilities. When the new state estimates are available, the
model probabilities are updated using the measurement prediction
error and the innovations covariance matrix. And finally, the filter
outputs are combined to obtain the overall estimate. In our solution,
two models are considered: dynamics only, which is the standard
KF-based carrier tracking model, and dynamics plus scintillation,

• Model 1 - Dynamics: x(1)
k =

[
θd,k fd,k ḟd,k

]T
.

• Model 2 - Dynamics + scintillation: x(2)
k = xk.

Note that within this approach, one may include a higher number of
scintillation regions just adding more models.

5. COMPUTER SIMULATIONS

In this section, in order to provide illustrative numerical results, the
performance of the proposed method (i.e., the 2-model IMM pre-
sented in previous section) is shown in a carrier phase tracking ex-
ample where the signal of interest is corrupted by severe scintillation.

To assess the performance of the proposed method, a simulated
trajectory with different dynamics was defined. In the sequel, the
three different regions considered are summarized:

• Region I - No motion without scintillation:
θk = θ0 ; for 0 ≤ kTs ≤ 10s.

• Region II - Constant acceleration without scintillation:
θk = θ0 + 2π

(
fd,kkTs + 1/2ḟd,kk

2T 2
s

)
;

for 10s < kTs ≤ 20s.

• Region III - Constant acceleration with severe scintillation:
θk = θd,k + θs,k ; for 20s < kTs ≤ 50s.

The following parameters were used: simulation time Tsim = 50s,
integration time Ts = 10ms, C/N0 = 45 dB-Hz, fd,0 = 2 Hz,
ḟd,0 = 0.5 Hz/s, S4 = 0.8 and τ0 = 0.1.

Figure 2 (top) plots one realization of the tracking solution for
the trajectory defined by regions I - III, to show the good behavior
of the proposed method in different dynamic scenarios. For compar-
ison, the solution obtained with a standard KF-based tracking tech-
nique (running on Model 1) is also plotted. In the case of severe
scintillation it is clear that the proposed approach outperforms the
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Fig. 2. One realization of the algorithm (top) and the RMSE obtained
with different methods for the carrier phase tracking under severe
scintillation conditions (bottom).

standard KF, which is not able to correctly track the fast variation on
the signal and suffers several cycle slips. In this challenging case,
for this given realization, the filter perfectly (the IMM estimates are
on the true phase line in the plot) follows the fast phase variations.

To obtain a statistically more significant result, the root mean
square error (RMSE) was used as a measure of performance, and
obtained from 500 Monte Carlo runs. The results obtained are given
in Figure 2 (bottom), where the IMM is compared with a 3rd order
PLL (PLL bandwidth set to 10 Hz) and a KF-based solution. From
0 to 20s (regions I and II), the RMSE is really low because there is
no scintillation and the 3 methods correctly deal with the estimation
of the dynamic parameters, that is why this regions are not plotted.
After time step 20s, the performance decreases because of the severe
scintillation effect. From the results, it is clear to see the performance
improvement obtained with the IMM-based solution with respect to
the other methods, providing also a validation of the AR(1).

6. CONCLUSIONS

This paper presented a solution to robust carrier phase tracking un-
der severe scintillation conditions. The proposed solution consid-
ered an IMM approach with two coupled KF-based tracking meth-
ods, one dealing with dynamics only, and the other taking into ac-
count the severe scintillation effects. The scintillation phase was
modeled and introduced into the state-space formulation using an
AR(1) process model. The performance was validated by computer
simulation in a GNSS carrier phase tracking application, using a
simulated trajectory with different scenarios. In this example, we
saw that the proposed method attains good performance results deal-
ing correctly with severe ionospheric scintillation and outperforming
current state-of-the-art techniques.
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