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ABSTRACT
In this work, we introduce the particle PHD forward filter
- backward simulator (PHD-FFBSi) capable of dealing with
uncertainties in the labeling of tracks that appear when track-
ing two targets in close proximity with measurements that do
not discriminate between them. The Forward Filter Backward
Simulator is a smoothing technique based on rejection sam-
pling for the calculation of the probabilities of association be-
tween targets and tracks. The forward filter is a particle imple-
mentation of the Probability Hypothesis Density (PHD) filter
that presents advantages over an SIR filter. Difficulties that
arise due to the presence of target birth and death processes
are addressed through modifications to the fast FFBSi. Sim-
ulations show the new particle filter of asymptotically linear
complexity in the number of particles calculates correct target
label probabilities at varying levels of measurement noise.

Index Terms— PHD, particle filter, FFBSi, smoothing,
closely spaced targets

1. INTRODUCTION

In theory, particle filters provide optimal solutions to any tar-
get tracking problem. However, in practice they have signifi-
cant problems in scenarios with targets that have been closely
spaced for some time and later dissolve. Therein, uncertain-
ties arise as to which target is which, what we refer to as tar-
get labeling uncertainties. Based on the information obtained
from, e.g., a radar sensor, it is typically not possible to resolve
uncertainties in labeling once they have appeared. Still, due
to degeneracy, which is an inherent part of any particle filter
(with finite number of particles), the filter will soon claim it
knows the correct labeling with probability 1 [4]. Clearly, this
does not reflect the true posterior distribution and moreover,
it may have significant repercussions in many applications.

Consequently, recent years have brought significant inter-
est in developing particle filters able to maintain accurate tar-
get label probabilities. A good formulation of the track la-
beling problem and summary of existing approaches can be
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found in [1]. In the following, we go briefly over the publica-
tions directly relevant to the current manuscript.

In [3], Blom and Bloem propose a new particle filter able
to provide an estimated track swap probability for the case of
two closely spaced linear Gaussian targets. At its core lies
a unique decomposition of the joint conditional density as a
mixture of a permutation invariant density and a permutation
strictly variant density.

In [7], Garcia-Fernandez et al. introduce a particle filter
able to maintain the multimodality of the posterior pdf after
the targets have moved in close proximity and thus, to extract
information about target labels. The drawback is that com-
plexity grows as O(N2), where N is the number of particles,
due to the association of a probability vector to each particle.

In [12], a closed form smoothing solution for the Proba-
bility Hypothesis Density (PHD) filter under linear Gaussian
multi-target assumptions has been derived.

In [8], we introduced a particle filter of asymptotically
linear complexity that consists of a sampling-importance-
resampling (SIR) forward filter and a backward smoother.
Target labels from the forward filter are ignored and target
identity probabilities are calculated based only on the particle
trajectories generated by backwards rejection sampling.

The O(N2) complexity of [3], [7] is prohibitive. [12]
does not perform labeling and [8] assumes the forward fil-
ter is a particle filter, which is not always desirable. In this
work, the PHD serves as the forward filter coupled with the
FFBSi, bringing access to more difficult scenarios at the cost
of relying on a potentially unreliable state extraction step.

2. FORWARD FILTERING-BACKWARD
SIMULATION

The PHD-FFBSi algorithm starts with running the forward fil-
ter, here a particle implementation of the PHD filter, followed
by backward sampling to smooth the forward PHD surface,
achieved by the fast FFBSi recursion. Note that, in order to
deal with the additional challenges of target birth and death,
the fast FFBSi requires modifications that will be described
in Section 2.2.2. Afterwards, target states are extracted from
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the smoothed PHD surface as they are a prerequisite for the
computation of target label probabilities, the final step of the
algorithm. Next, we go over the PHD-FFBSi in detail.

2.1. Particle PHD filter

In our simulations, we have used the particle implementation
of the PHD filter in [6]. Here, we briefly sketch its steps.

1) Prediction: Assuming there are N particles at time k−
1, their propagated states and corresponding weights are:

ξ
(i)
k|k−1 = Fξ

(i)
k−1 + v(k) (1)

w
(i)
k|k−1 = w

(i)
k−1Ps (2)

for i = 1, . . . , N , where Ps is the target survival probability.
2) Target Birth: Each measurement z is treated as a poten-

tial new target and represented by Nz particles with locations
sampled from N (z, σ2

z). Birth particles have equal weights:

w
(i)
k|k−1 =

bk|k−1(S)

Nnew

(3)

where bk|k−1(S) is the total target birth weight for the surveil-
lance region and Nnew=Nz|Z(k)| is the total number of par-
ticles proposed for the “investigation” of newborn targets.

3) Update: Particle weights are updated by:

w
(i)
k =

[

1− Pd +
∑

z∈Z

Pdf(z|ξ(i))

λkck(z) + C(z)
+
]

w
(i)
k|k−1 (4)

where C(z) =
∑N+Nnew

j=1 Pdf(z|ξ(j))w
(j)
k|k−1.

4) Resampling: Particles {w
(i)
k , ξ(i)}i=N+Nnew

i=1 are re-
sampled proportionally to their weight in order to preserve
the total weight of the PHD surface Tk|k (see Eq. (5)). Af-
ter resampling, each particle is given equal weight. Further
description and complete notation are in [11] and [6].

2.2. Backward Simulator

The fast FFBSi algorithm proposed in [5] is the backbone of
our smoothing of the PHD filter. The original FFBSi formu-
lation has O(N2) complexity. Instead, by using a rejection
sampling, the fast FFBSi algorithm used here has asymptoti-
cally linear complexity in the number of particles.

2.2.1. Fast FFBSi

Input: Sequences of weighted particles {xi
k, w

i
k}

N
i=1 describ-

ing forward filtering distributions π(xk|z1:k), k = 1, · · · , T .
1. Initialize the backward trajectories:

{I(j)}Mj=1 ∼ {wi
T }

N
i=1, x̃j

T = x
I(j)
T , j = 1, · · · ,M

2. for k = T − 1 : 1
3. L = {1, · · · ,M}
4. while L 6= ∅

5. n = |L|
6. δ = ∅
7. Sample independently {C(q)}nq=1 ∼ {wi

k}
N
i=1

8. Sample independently {U(q)}nq=1 ∼ U([0, 1])
9. for q = 1 : n

10. if U(q) ≤
f(x̃

L(q)
k+1 |x

C(q)
k

)

ρ

11. I(L(q)) = C(q)
12. δ = δ ∪ {L(q)}
13. end
14. end
15. L = L\δ
16. end
17. Append the samples to the backward trajectories.

x̃
j
k = x

I(j)
k , x̃j

k:T = {x̃j
k, x̃

j
k+1:T }, j = 1, · · · , N

18. end
Output: Collection of backward trajectories {x̃j

1:T }
M
j=1 de-

scribing the joint smoothing distribution π(x1:T |z1:T ).
The core of the above algorithm relies on updating L,

the index list of samples at time k that still need assignment
(smoothing particles) based on C, the index list of candidate
samples at time k (filter particles) by testing whether the for-
ward filter particle with (random) index C(q) should be ac-
cepted as the smoothing particle with index L(q) [10].

2.2.2. Birth and death of targets

Target birth is automatically dealt with by the algorithm in
Section 2.2.1. If a target is born at time k, there are particles
representing it on the forward PHD surface from time k on-
ward as described in Section 2.1. In the backward pass, the
fast FFBSi tests if sampled particles from the forward PHD
surface at k (some of which would be representing the new
target) can be accepted as particles on the smoothed PHD sur-
face at k by checking whether the sampled particles from the
forward PHD surface at k could give rise to the sampled par-
ticles from the smoothed PHD surface at k+ 1 in accordance
with the target motion model.

On the other hand, target death requires an additional step
to be introduced into the fast FFBSi (between lines 3 and 4).
If a target dies at time k, there will not be particles repre-
senting it on the forward PHD surface from time k onward
and hence, in the backward pass, sampled particles from the
forward PHD surface at k representing this target would not
pass the test as there would be no sampled particles from the
smoothed PHD surface at k + 1 that could be predicted from
them using the target motion model. Therefore, in order to
account for target deaths, at each scan k, N(1 − Ps) sam-
pled particles from the forward PHD surface at k are directly
accepted as particles on the smoothed PHD surface at k.

2.3. Peak Extraction

To estimate target states, the smoothed PHD surface is ap-
proximated by a Gaussian Mixture using the Expectation-
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Maximization algorithm [2]. At each scan, the EM algorithm
fits M= |Z(k)|+[Tk−1|k−1] Gaussian modes, where

Tk|k =

N+Nnew
∑

j=1

w
(j)
k (5)

The heaviest Tk|k modes are used in the computation of target
label probabilities. Equations for weight, location and covari-
ance of the resulting Gaussian modes are given in [6].

2.4. Computation of target label probabilities

Most tracking algorithms define target labels at the start of the
scenario with the objective to track these labeled targets over
time. We instead define the target labels at scenario end time.
For the scans in the interval [kstart,kend] when there are two
targets in the surveillance area, there are two possibilities of
target to track labeling. Let Pr(x1, x2; k) be the probability
that target x1 at time k, ∀k ∈ [kstart,kend], is target 1 at time
kend and thus target x2 at time k is target 2 at time kend.
Clearly, for two targets, Pr(x2, x1; k)=1−Pr(x1, x2; k).

Based on the backward trajectories created by the FF-
BSi (see line 17 in Section 2.2.1), we count how many par-
ticles are assigned/close to which target at kend and stay as-
signed/close to the same target at time k to form the probabil-
ities of which target is which track. Note that Pr(x1, x2; k) is
not necessarily decreasing because trajectories can change as-
signment back and forth between targets from time k to kend.

3. RESULTS

In our simulation, we considered the same scenario as in our
previous work [8] involving two targets that come in close
proximity of each other and subsequently diverge. State vec-
tors are scalars evolving according to a Gaussian random walk
model xj

k = x
j
k−1 + v

j
k−1, where the process noise is vjk−1 ∼

N (0, σ2
v) for j = 1, 2. Both targets are detected at all times

and there are no false alarms. Target detections are modeled
as zjk = x

j
k+u

j
k, with measurement noise uj

k ∼ N (0, σ2
u) but

we do not know which detection is associated to which target.
Three cases of measurement noise strength were investigated:
low (σu = 0.01), medium (σu = 0.1) and high (σu = 0.25).

Additional difficulty is introduced compared to the sce-
narios in [8] by adding birth and death of targets. Here, target
1 appears at k = 1 and dies at time kend = 78 and target 2 ap-
pears at kstart = 23 and is present throughout until T = 100.
The same number of particles, i.e. M = N = 2000 are used
for both the forward filter and the smoother.

Fig. 1 displays a typical Monte Carlo run in the case of
medium measurement noise. Fig. 1a plots the measurements
available to the PHD filter, Fig. 1b shows the target location
estimates after the forward pass, i.e. the locations of the two
heaviest peaks extracted from the forward PHD surface and
Fig. 1c shows the target location estimates ater the backward

pass, i.e. the locations of the two heaviest peaks extracted
from the smoothed PHD surface. Expectedly, due to smooth-
ing, the target location estimates in Fig. 1c are closer to the
true trajectories than the target location estimates in Fig. 1b.

Fig. 2 shows the target label probabilities averaged over
100 Monte Carlo runs at scans in which both targets are
present, for the same levels of measurement noise as above.
In the case of low measurement noise, there is minimal over-
lap between the particle clouds when the two targets move
in close proximity of each other and this is reflected in the
values of Pr(x1, x2; k), i.e. the probability that target x1 at
scan kend = 78 is target 1 at scan k and target x2 at scan kend
is target 2 at scan k, stays far from the permutation variant
point of 0.5. Specifically, after the backward pass, we are
about 75% certain that target x1 at scan kend = 78 is target 1
at kstart = 23 and that target x2 at kend is target 2 at kstart.

In the case of a medium measurement noise strength, after
the backward pass we are still able to resolve the targets with
Pr(x1, x2; kstart = 23) ≈ 55%. Note that Pr(x1, x2; k)
decreases dramatically between scans k = 55 to k = 45, the
time in which the targets move in close proximity.

In extremely high measurement noise (σu = 0.25)1, tar-
get label probabilities are slightly indicative of a switch as
Pr(x1, x2; k = 23) ≈ 45%. This value is accurate and due
to significant overlap between the particle clouds following
the two targets induced by the very large process noise.

4. CONCLUSION

4.1. Relationship to our prior work

In our initial work on extracting target label probabilities in
scenarios with targets that move in close proximity [8], an
SIR filter was used as the forward filter resulting in the SIR-
FFBSi. Next, we give the reasons for investigating the PHD
as the forward filter and the differences with respect to the
SIR. Our intention is not to compare performance but to point
out that, when combined with the fast FFBSi, the PHD filter
and the SIR lead to different approaches.

The PHD filter is better suited for use in multiple tar-
gets scenarios because the dimension of the PHD surface is
the dimension of a single target state while SIR particle fil-
ters don’t scale well in the number of targets. Moreover, the
PHD filter is more versatile than the SIR when handling target
birth/death, missed detections and false alarms. Note that in
[8], a variable number of targets was not considered.

The PHD takes an unlabeled approach to tracking which
on one hand, prevents us from outputing MMOSPA estimates
[9] as we did for the SIR-FFBSi; instead, we output target
states through peak extraction which could become less reli-
able in complex scenarios. On the other hand, due to the PHD
being an unlabeled tracker, we avoid the step of removing the

1Note that the intertarget distance while targets are in close proximity is
d = 0.5, i.e. d = 2σu in high measurement noise!
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Fig. 1. Target location estimates in a typical Monte Carlo run.

target labels generated by the forward filter (in our case, the
SIR) prior to smoothing, a step that required the creation of
NT ! copies for each particle in the forward filter, where NT

is the number of targets [8].
Issues such as the presence of 3+ targets, missed detec-

tions and false alarms and using a Gaussian Mixture imple-
mentation of PHD filter will be addressed in future work.

4.2. Relationship to other prior work

The emerging area of track labeling has been very active in
recent years but there is quite a bit more work to be done [1].

The PHD-FFBSi algorithm presented here is a novel par-
ticle filter able to maintain accurate target label probabilities

20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

p
k

 

 

Pr(x1,x2)
Pr(x2,x1)

(a) Low

20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

p
k

 

 

Pr(x1,x2)
Pr(x2,x1)

(b) Medium
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(c) High

Fig. 2. Target label probabilities vs. measurement noise.

in challenging scenarios in which targets move in close prox-
imity and later diverge. Our approach is based on smoothing
(hence, it is different from e.g. the decomposed particle filter-
ing proposed in [3]) and has approximately linear complexity
in the number of particles as opposed to the squared complex-
ity of the particle filter in [7]. Additionally, while the work in
[12] improves past estimates, it does so without connecting
them over time; instead, the PHD-FFBSi has the advantage
of computing target trajectories. While the current study fits
within recent approaches to joint multitarget tracking and la-
beling (see [1] and references therein), it stands out due to
its flexibility in the choice of forward filter, low (linear) com-
plexity, and promise of automated track management based
on the particle trajectories output during smoothing.
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