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ABSTRACT

In this paper we address the problem of multi-frame de-
tection (MFD) of a Markov target observed through noisy
measurements. To limit the system complexity, we gate the
detector with a pre-processing stage which discards unreli-
able observations in each frame. A novel dynamic program-
ming algorithm is introduced, which applies a track-before-
detect (TBD) logic to declare the presence of the target and
jointly estimate its position. The closed-form complexity
analysis and the numerical examples show that advantageous
complexity-performance tradeoffs can be obtained with re-
spect to the single-frame detector and with respect to other
strategies already present in the literature.

Index Terms— Multi-frame detection (MFD), track-
before-detect (TBD), dynamic programming, Markov targets.

1. INTRODUCTION

Multi-frame detection (MFD) has been proposed to detect
weak signals from noisy measurements by integrating their
contribution over multiple consecutive frames. In the pres-
ence of target motion (or, more generally, of a dynamical
system), MFD requires track-before-detect (TBD) techniques
to correctly integrate the target signal along its unknown tra-
jectory. In [1–3], such integration take place in the sensor
measurement space, so as to obtain reliable detections to be
possibly forwarded to a tracking stage. In [4–6], instead, the
integration take place in the target state space, and detection
and tracking are fully merged.1

MFD can be hardly implementable in the presence of ag-
ile targets and sensors with a large number of resolution el-
ements (e.g., long-range, surveillance radars), even resorting
to dynamic programming algorithms, such as the Viterbi al-
gorithm [8]. To overcome such a complexity limitation we
consider here the adoption of a pre-processing stage to limit

This works was carried out under a research contract sponsored by Selex
Galileo, Nerviano (MI), Italy.

1As pointed out in [7], TBD should be more properly defined as track-
before-declare in this case, since target is tracked before declaring it to be a
valid target. The term “detect,” instead, may generate confusion, in that it
could be referred to target detections (i.e., measurements).

the number of measurements on the basis of the their like-
lihood function. The main contribution is the derivation of
a novel dynamic-programming TBD algorithm to efficiently
perform MFD on the reduced-size set of observations, whose
cardinality is now random and time-varying. A closed-form
complexity analysis is given, and a performance assessment
is provided, including comparisons with the single-frame de-
tector, the MFD with un-processed data, and the two-stage
detector analyzed in [9, 10].

The reminder of the paper is organized as follows. In
Sec. 2, problem formulation is given, while in Sec. 3 the test
statistics are derived. The proposed TBD algorithm is pre-
sented in Sec. 4, and its performance is analyzed in Sec. 5.
Finally, concluding remarks are given in Sec. 6.

1.1. Relation to prior works

TBD was originally proposed in [4, 11–13] as a means to im-
prove detection of weak moving objects, and has been suc-
cessfully applied to both passive [5, 6, 14, 15] and active sen-
sors [1, 16–23]. The two-stage decision approach considered
here was envisioned in [18, 19, 24]; however, these previous
works did not account for the fact that the number of obser-
vations surviving the first stage can be much smaller than the
number of resolution elements. Finally, our work shares many
aspects with [9, 10], but the TBD procedure described there
does not take into account misses at the current frame, so that
detection performance is impaired.

2. PROBLEM FORMULATION

Consider a sensor with M × N resolution elements (or pix-
els), where measurements are recorded at discrete time in-
stants n ∈ Z. At most one target is present in the scene, and
only one pixel at each epoch n contain the signal from the
prospective target. The signal from pixel (i, j) at time n is
denoted zn(i, j), and it is a random variable with probability
density f1, if the target is present in (i, j), and f0, otherwise.
The process zn(i, j) is independent over the space (i.e., over
i, j) and, conditioned on the absence or on the presence of a
target in a specified pixel sequence, over the time (i.e., over
n).

6382978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



{
zn(i, j)

}
i,j Sn

γ1 γ2

pre-processing
Λ(·) ≷ γ1

detector
H0 vs H1

buffer
Sn−L+1, . . . ,Sn−1

list of
candidate
detections

H0 : ∅

H1 : ŷn

Fig. 1. The detector declares the presence of a target and
jointly outputs its pixel location based on the lists of candidate
detections {S`}n`=n−L+1.

The detection scheme for this measurement model is re-
ported in Fig. 1. A pre-processing stage receives the mea-
surements {zn(i, j)}i,j and, at each epoch n, discards all the
observations that, with high probability, do not come from
a target. The merit function adopted at this step is the log-
likelihood ratio (LLR) of f1 to f0, i.e., Λ = ln(f1/f0), and
the pruning rule is

{
Λ
(
zn(i, j)

)
> γ1 ⇒ keep zn(i, j)

Λ
(
zn(i, j)

)
≤ γ1 ⇒ discard zn(i, j)

The surviving measurements at epoch n, whose number is
denoted Dn ∈ {0, 1, . . . ,MN}, are organized in the matrix

Sn =
(
sT1,n · · · sTDn,n

)T

for Dn 6= 0, where ( · )T denotes transpose, and sk,n =
(xk,n ζk,n) is a 3-dimensional, row-vector containing the
pixel location xk,n ∈ {1, . . . ,M} × {1, . . . , N} and the cor-
responding measurement ζk,n = zn(xk,n) at epoch n.

The detector jointly elaborates the current data-frame Sn
and the past L − 1 frames {S`}n−1

`=n−L+1, and decides if the
target is present (hypothesis H1) or not (hypothesis H0) at
epoch n. If H1 is declared, then an estimate of the target
pixel location, say ŷn, is also given. Observe that this detec-
tion scheme is general enough to subsume both single-frame
detection (when L = 1) and multi-frame detection with raw
input data (when γ1 = −∞ and L ≥ 2).

3. JOINT DETECTION AND ESTIMATION

Without loss of generality, assume that n = L, i.e., SL is the
current data frame. Let y` be the (unknown) pixel occupied
by the target in the `-th frame under hypothesis H1. The se-
quence of pixels y = (y1 · · · yL) defines the target trajectory
over the L processed time intervals, and the detection prob-
lem can be solved by resorting to a generalized likelihood ra-
tio test (GLRT): the LLR conditioned to y is maximized over
the set of target trajectories, say R, and is compared with a
secondary threshold, say γ2. It can be shown that the GLRT
is

max
y∈R

L∑

`=1

(
Λ
(
z`(y`)

)
− κ
)
1{Λ(z`(y`))>γ1}

H1

≷
H0

γ2 (1)

where 1A is the indicator function of the event A, and
κ = ln β

1−α , with β =
∫
R 1{Λ(z)≤γ1}f1(z)dz and α =∫

R 1{Λ(z)>γ1}f0(z)dz being the local (i.e., pixel-wise) prob-
ability of miss and false alarm, respectively. If a target is
declared to be present, then the position estimate at epoch L
can be obtained from the maximum-likelihood estimate of the
trajectory

ŷ = arg max
y∈R

L∑

`=1

(
Λ
(
z`(y`)

)
− κ
)
1{Λ(z`(y`))>γ1}.

For simplicity, here we take the last pixel index of ŷ that cor-
responds to a surviving measurement in {S`}L`=1.2

In this work, we consider a first-order Markov model for
the target evolution with a constraint on the maximum tar-
get speed, say vmax pixels per frame, along each direction,
whereby set of target trajectories takes the form

R =
{
y ∈

(
{1, . . . ,M} × {1, . . . , N}

)L
:

‖y` − y`−1‖ ≤ vmax, ` = 2, . . . , L
}

(2)

‖ · ‖ denoting a preassigned vector norm. Notice that, differ-
ently from [9, 10], trajectories with a miss at the last frame L
are considered admissible.

4. PROPOSED TBD ALGORITHM

As shown in [3–6, 19], the maximization (1) can be carried
out avoiding an exhaustive search through the Viterbi algo-
rithm [8]. However, even the complexity of the Viterbi al-
gorithm can be unaffordable in many applications. E.g., if
M = N = 103, and that the target is allowed a transition
of ±20 pixels in each dimension, the Viterbi algorithm has to
compute a maximum between 1681 elements (41 × 41 cells
along the two dimensions), for each of the MN = 106 res-
olution elements of each frame. The algorithm we propose
here takes advantage of the fact that the pre-processing stage
reduces the number of non-zero data measurements in each
frame, and efficiently implement the GLRT in (1). It is a mod-
ification of the procedure introduced in [9,10] (and in [25,26]
in a radar framework), where trajectories with a miss at the
last frame could not be handled.

Observe that the summation in the GLRT in (1) only de-
pends on the observations surviving the pre-processing stage,
and, therefore, the maximization can be carried out on a
subset of R. Every element of this subset can be speci-
fied by a L-dimensional vector, say t = (t1 · · · tL), with
t` ∈ {0, 1, . . . , D`} for ` = 1, . . . , L: specifically, t` = m

2If an accurate dynamic model of the target evolution is available, a re-
gression (or any other curve-fitting method) can be used to obtain a better
estimate of the target trajectory and, therefore, of its final position (especially
in the case of a missing observation in the last frame).
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means that the target is observed at epoch `, and the cor-
responding detection is sm,`, while t` = 0 that there is a
missing measurement at epoch `. The sequence of positions
indexed by t is xt1,1, . . . , xtL,L, with xt`,` not defined if
t` = 0 (i.e., in case of a missing observation). The corre-
sponding sequence of statistics entering the GLRT in (1) is
λt1,1, . . . , λtL,L, where

λk,` =
(
Λ(ζk,`)− κ

)
1{k 6=0}.

With these definitions, the GLRT in (1) can be now recast as

max
t∈R′

L∑

`=1

λt`,`
H1

≷
H0

γ2 (3)

where

R′ =
{
t : ‖xtp,p − xtq,q‖ ≤ vmax|p− q|,

∀ p, q ∈ {1, . . . , L} such that tp, tq 6= 0
}
. (4)

It is not difficult to see that, upon defining

Fk,` = max
t∈R′: t`=k,

and tp=0 ∀p>`

L∑

p=1

λtp,p

Tk,` = arg max
t∈R′: t`=k,

and tp=0 ∀p>`

L∑

p=1

λtp,p

the test in (3)—and therefore the GLRT in (1)—can be rewrit-
ten also as

max
(k,`):`∈{1,...,L}
and k∈{1,...,D`}

Fk,`
H1

≷
H0

γ2.

As to position estimation,

(k̂, ˆ̀) = arg max
(k,`):`∈{1,...,L}
and k∈{1,...,D`}

Fk,`

is an estimator of the pixel index of the last observation of the
target, so that we take

ŷL = x(Tk̂,ˆ̀)ˆ̀,
ˆ̀

where (Tk̂,ˆ̀)ˆ̀ is the ˆ̀-th entry of the vector Tk̂,ˆ̀.
A dynamic programming algorithm to compute the statis-

tics {Fk,`, Tk,`}, for ` = 1, . . . , L, and k = 1, . . . , D`, is
presented next.

4.1. Track formation algorithm

LetMk,` be the set of indexes addressing all past alarms com-
patible with the current alarm Sk,`, i.e.,

Mk,` =
{

(j, p) : p ∈ {1, . . . , `− 1}, j ∈ {1, . . . , Dp},

and ‖xk,` − xj,p‖ ≤ vmax(`− p)
}

(5)

and let ( · )1:m denote the sub-vector composed of the first m
entries of the vector. Then, we give the following

Algorithm 1 (Computes {Fk,`, Tk,`}, for ` = 1, . . . , L and
k = 1, . . . , D`}).
1. Initialization: ` = 1

For k = 1, . . . , D1

Fk,1 = λk,1

Tk,1 =
(
k 0 · · · 0

)

2. Recursion: ` = 2, . . . , L

For k = 1, . . . , D`

Fk,` =




λk,` + max

(j,p)∈Mk,`

Fj,p, ifMk,` 6= ∅

λk,`, otherwise

Tk,` =





(
(Th,m)1:m 0 · · · 0 k 0 · · · 0

)
,

ifMk,` 6= ∅, where
(h,m)= arg max

(j,p)∈Mk,`

Fj,p
(
0 · · · 0 k 0 · · · 0

)
, otherwise

`-th entry

4.2. Complexity analysis

The complexity of Algorithm 1 is ruled by the innermost
loop, which requires to check the constraints between sk,`
and sj,p, for j = 1, . . . , Dp, p = 1, . . . , ` − 1, to obtain
the set Mk,`. Since ` = 2, . . . , L and k = 1, . . . , D`, the
number of operation needed by Algorithm 1 is in the or-
der of

∑L
`=2D`

∑`−1
p=1Dp. Notice now that {D`}L`=1 is a

sequence of i.i.d. random variables. Specifically, each D`

is the sum of two independent Binomial random variables,
and its mean is (MN − K)α + K(1 − β), where K = 1
under H1, and K = 0 under H0. Therefore, the aver-
age number of operations of Algorithm 1 is in the order of
L(L−1)[(MN−K)α+K(1−β)]2, i.e., quadratic in the num-
ber of integrated frames and in the average number of can-
didate detections per frame, and the average computational
complexity is O

(
(LMNα)2

)
.

Recall now that the complexity of the Viterbi-based rou-
tine is O(LMNv2

max).3 Therefore, if α = o
(
vmax/

√
LMN

)
,

then the average complexity of Algorithm 1 is smaller that
that of the Viterbi algorithm. Observe, finally, that if γ1 is
chosen so that α = O

(
1/(L

√
MN)

)
, then the number of op-

erations required by Algorithm 1 is in the same order as that
required by the first stage to evaluate the MN LLR’s, so that
the complexity of the proposed detection architecture is equal
to that of the single-frame detector, i.e., O(MN).

5. NUMERICAL RESULTS

We consider a sensor with N = M = 100 and a target
evolving according to a random walk with independent tran-

3In the recursive step of the Viterbi algorithm a maximization on the ad-
missible afferent states is to be performed for each of the MN resolution el-
ements. Since the cardinality of this set is in the order of v2max (which may be
dependent of M and N ), the computational complexity is O(LMNv2max).
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Fig. 2. PD vs α (in logarithmic scale) for different values vmax
(in pixels per frame), PFA = 10−2, and SNR = 8 dB.

sitions along the two directions, so that the infinity norm is
used in (2), (4), and (5). The random variables zn(i, j) are
exponentially distributed with f0(z) = e−z1[0,∞)(z) and
f1(z) = (1 + SNR)−1e−z/(1+SNR)

1[0,∞)(z), where SNR is the
signal-to-noise ratio. The memory of the detector is L = 4,
and the performance of the test is assessed in terms of prob-
ability of false alarm (PFA), i.e., accept H1 under H0, prob-
ability of correct detection (PD), i.e., accept H1 under H1,
and root mean square error (RMSE) on the estimated target
position. For the sake of comparison, we report the cases
of standard single-frame detection (L = 1), MFD with raw
input-data (L ≥ 1 and α = 1), and the MFD procedure con-
sidered in [9, 10]. The plots have been obtained using the
Monte Carlo method with 6 · 105 independent realizations of
batches of L frames.

Fig. 2 shows PD versus α for PFA = 10−2, L = 4, and
different values of vmax, while Fig. 3 reports the correspond-
ing RMSE on the position estimate. A large gain with respect
to the single-frame detector is observed for all the inspected
velocities in terms of both PD and RMSE on the position esti-
mate. Interestingly, the dependence of PD on α is not mono-
tonic when vmax > 0, since two conflicting effects are play-
ing. On the one hand, large values of α allow to take more
observations of the target during the observation window; on
the other, small values of α guarantee that most of the false
alarms in the data set have been removed, so that the cardinal-
ity of the search set R′ is reduced. When vmax = 0, instead,
R′ has the smallest cardinality, equal to MN irrespective of
α: in this case MFD (which reduces to pixel-wise incoherent
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Fig. 3. RMSE on the estimated position vs α (in logarithmic
scale) for different values vmax (in pixels per frame), PFA =
10−2, and SNR = 8 dB.

integration) achieves its best performance, which degrades as
α is decreased. Finally, notice that the TBD strategies pro-
posed here is equivalent to that in [9, 10] for raw input data
(α = 1), but it is superior for censored data in terms of both
PD and RMSE, and the gain increases as α is decreased: this
due to the fact that the procedure in [9, 10] does not handle
a missed observation of the target at the end of the process-
ing window, so that its performance converges to that of the
single-frame detector when α→ 0.

6. CONCLUSION

A novel procedure for MFD of a Markov target has been
proposed here. Its core is a dynamic programming algo-
rithm to perform TBD on a set of pre-processed observations.
The complexity analysis showed that proper selection of the
threshold in the pre-processing stage permits to have the same
computational complexity as the single-frame detector, while
simulations demonstrated that large gains with respect to the
single-frame detector and to the MFD procedure of [9,10] can
be obtained.
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