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ABSTRACT

In this paper we address the problem of multi-frame de-
tection (MFD) of a Markov target observed through noisy
measurements. To limit the system complexity, we gate the
detector with a pre-processing stage which discards unreli-
able observations in each frame. A novel dynamic program-
ming algorithm is introduced, which applies a track-before-
detect (TBD) logic to declare the presence of the target and
jointly estimate its position. The closed-form complexity
analysis and the numerical examples show that advantageous
complexity-performance tradeoffs can be obtained with re-
spect to the single-frame detector and with respect to other
strategies already present in the literature.

Index Terms— Multi-frame detection (MFD), track-
before-detect (TBD), dynamic programming, Markov targets.

1. INTRODUCTION

Multi-frame detection (MFD) has been proposed to detect
weak signals from noisy measurements by integrating their
contribution over multiple consecutive frames. In the pres-
ence of target motion (or, more generally, of a dynamical
system), MFD requires track-before-detect (TBD) techniques
to correctly integrate the target signal along its unknown tra-
jectory. In [1-3], such integration take place in the sensor
measurement space, so as to obtain reliable detections to be
possibly forwarded to a tracking stage. In [4-6], instead, the
integration take place in the target state space, and detection
and tracking are fully merged.'

MFD can be hardly implementable in the presence of ag-
ile targets and sensors with a large number of resolution el-
ements (e.g., long-range, surveillance radars), even resorting
to dynamic programming algorithms, such as the Viterbi al-
gorithm [8]. To overcome such a complexity limitation we
consider here the adoption of a pre-processing stage to limit

This works was carried out under a research contract sponsored by Selex
Galileo, Nerviano (MI), Italy.

! As pointed out in [7], TBD should be more properly defined as track-
before-declare in this case, since target is tracked before declaring it to be a
valid target. The term “detect,” instead, may generate confusion, in that it
could be referred to target detections (i.e., measurements).
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the number of measurements on the basis of the their like-
lihood function. The main contribution is the derivation of
a novel dynamic-programming TBD algorithm to efficiently
perform MFD on the reduced-size set of observations, whose
cardinality is now random and time-varying. A closed-form
complexity analysis is given, and a performance assessment
is provided, including comparisons with the single-frame de-
tector, the MFD with un-processed data, and the two-stage
detector analyzed in [9, 10].

The reminder of the paper is organized as follows. In
Sec. 2, problem formulation is given, while in Sec. 3 the test
statistics are derived. The proposed TBD algorithm is pre-
sented in Sec. 4, and its performance is analyzed in Sec. 5.
Finally, concluding remarks are given in Sec. 6.

1.1. Relation to prior works

TBD was originally proposed in [4, 11-13] as a means to im-
prove detection of weak moving objects, and has been suc-
cessfully applied to both passive [5,6, 14, 15] and active sen-
sors [1,16-23]. The two-stage decision approach considered
here was envisioned in [18, 19, 24]; however, these previous
works did not account for the fact that the number of obser-
vations surviving the first stage can be much smaller than the
number of resolution elements. Finally, our work shares many
aspects with [9, 10], but the TBD procedure described there
does not take into account misses at the current frame, so that
detection performance is impaired.

2. PROBLEM FORMULATION

Consider a sensor with M x N resolution elements (or pix-
els), where measurements are recorded at discrete time in-
stants n € Z. At most one target is present in the scene, and
only one pixel at each epoch n contain the signal from the
prospective target. The signal from pixel (¢, j) at time n is
denoted z, (3, j), and it is a random variable with probability
density f1, if the target is present in (¢, j), and fo, otherwise.
The process z, (4, j) is independent over the space (i.e., over
1, 7) and, conditioned on the absence or on the presence of a
target in a specified pixel sequence, over the time (i.e., over
n).

ICASSP 2013



.. list of Hy: o
{Zn(l- ]>} . . candidate g 04»
77/ J4,j | pre-processing | detections n detector
—_—> S
A zm Hovs Hy | Hiign

T”ﬂ T’Ya
buffer

SnfL+1~, RN Sn—l

Fig. 1. The detector declares the presence of a target and
jointly outputs its pixel location based on the lists of candidate
detections {S¢}y_,, ;.1

The detection scheme for this measurement model is re-
ported in Fig. 1. A pre-processing stage receives the mea-
surements {2, (%, j)}; ; and, at each epoch n, discards all the
observations that, with high probability, do not come from
a target. The merit function adopted at this step is the log-
likelihood ratio (LLR) of f; to fo, i.e., A = In(f1/fo), and
the pruning rule is

A(Zn(luj)) >m = keep Zn(za.j)
Az, (i,7)) <y = discard 2, (i, j)

The surviving measurements at epoch n, whose number is
denoted D,, € {0,1,..., M N}, are organized in the matrix

Su=(s1n - 5h,0)"

for D,, # 0, where (-)7 denotes transpose, and s, =
(kn Ck,n) is a 3-dimensional, row-vector containing the
pixel location ., € {1,..., M} x {1,..., N} and the cor-
responding measurement (i, ,, = 2 (T, ) at epoch n.

The detector jointly elaborates the current data-frame .S,
and the past L — 1 frames {S@}?:_717 +1- and decides if the
target is present (hypothesis H1) or not (hypothesis Hj) at
epoch n. If H; is declared, then an estimate of the target
pixel location, say 4, is also given. Observe that this detec-
tion scheme is general enough to subsume both single-frame
detection (when L = 1) and multi-frame detection with raw
input data (when v; = —oco and L > 2).

3. JOINT DETECTION AND ESTIMATION

Without loss of generality, assume that n = L, i.e., Sy, is the
current data frame. Let y, be the (unknown) pixel occupied
by the target in the ¢-th frame under hypothesis H;. The se-
quence of pixels y = (y; - - - yr) defines the target trajectory
over the L processed time intervals, and the detection prob-
lem can be solved by resorting to a generalized likelihood ra-
tio test (GLRT): the LLR conditioned to y is maximized over
the set of target trajectories, say R, and is compared with a
secondary threshold, say .. It can be shown that the GLRT
is

L
Hy
VER £ (sz(yf)) _'i)]l{Mz«(y@))m}in (1

where 14 is the indicator function of the event A, and
Kk = In %, with § = f]R ]1{A(z)§71}f1 (z)dz and a =
f]R L{A(2)>+}fo(2)dz being the local (i.e., pixel-wise) prob-
ability of miss and false alarm, respectively. If a target is
declared to be present, then the position estimate at epoch L
can be obtained from the maximum-likelihood estimate of the
trajectory

L
g = arg max Y (A1) = &) Liaz o)
YER 4

For simplicity, here we take the last pixel index of ¢ that cor-
responds to a surviving measurement in { Sy} fi 1.2

In this work, we consider a first-order Markov model for
the target evolution with a constraint on the maximum tar-
get speed, say vmax pixels per frame, along each direction,
whereby set of target trajectories takes the form

R:{ye ({1,.... M} x {1,....ND":
”yf_nyl” S 'Umax,€:27...7L} (2)

| - || denoting a preassigned vector norm. Notice that, differ-
ently from [9, 10], trajectories with a miss at the last frame L
are considered admissible.

4. PROPOSED TBD ALGORITHM

As shown in [3-6, 19], the maximization (1) can be carried
out avoiding an exhaustive search through the Viterbi algo-
rithm [8]. However, even the complexity of the Viterbi al-
gorithm can be unaffordable in many applications. E.g., if
M = N = 102, and that the target is allowed a transition
of £20 pixels in each dimension, the Viterbi algorithm has to
compute a maximum between 1681 elements (41 x 41 cells
along the two dimensions), for each of the M N = 10° res-
olution elements of each frame. The algorithm we propose
here takes advantage of the fact that the pre-processing stage
reduces the number of non-zero data measurements in each
frame, and efficiently implement the GLRT in (1). It is a mod-
ification of the procedure introduced in [9,10] (and in [25,26]
in a radar framework), where trajectories with a miss at the
last frame could not be handled.

Observe that the summation in the GLRT in (1) only de-
pends on the observations surviving the pre-processing stage,
and, therefore, the maximization can be carried out on a
subset of R. Every element of this subset can be speci-
fied by a L-dimensional vector, say ¢ = (¢1 --- t1), with
te € {0,1,...,Dy} for £ = 1,..., L: specifically, t, = m

2If an accurate dynamic model of the target evolution is available, a re-
gression (or any other curve-fitting method) can be used to obtain a better
estimate of the target trajectory and, therefore, of its final position (especially
in the case of a missing observation in the last frame).
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means that the target is observed at epoch ¢, and the cor-
responding detection is S,, ¢, while t, = 0O that there is a
missing measurement at epoch ¢. The sequence of positions
indexed by % is x4, 1,...,%, 1, With x4, o not defined if
ty = 0 (i.e., in case of a missing observation). The corre-
sponding sequence of statistics entering the GLRT in (1) is
Aty1s- -+, Ay, L, Where

Moo = (A(Chye) — K) Lgzoy-
With these definitions, the GLRT in (1) can be now recast as

max Y Ao 2 72 3)
=1
where
R = {t : thp,p - ‘rtqqu < 'Umax‘p - Q‘v
Vp,qe{l,..., L} suchthatt,,t, # 0}. &)

It is not difficult to see that, upon defining

L
Z Aty.p

Fre= max
teR’: ty=k,
and tp =0 Vp>£ p=1
L
Ty = arg max E At,.p
teR’: ty=k, p—1

and tp=0 Vp>£

the test in (3)—and therefore the GLRT in (1)—can be rewrit-

ten also as
Hy

max Fro 2 7.
(k,0):0e{1,...,L} k. I§ 72
andke{1,..., Dy} 0
As to position estimation,

(k,f) = arg max Fr.e

(k,0):6€{1,...,L}
and ke€{1,...,Dp}

is an estimator of the pixel index of the last observation of the
target, so that we take

. )
YL (Tr, )t

where (T}, ;); is the {-th entry of the vector T3 4-

A dynamic programming algorithm to compute the statis-
tics {Fy e, Ti e}, for £ = 1,...,L,and k = 1,...,Dy, is
presented next.

4.1. Track formation algorithm

Let M}, ¢ be the set of indexes addressing all past alarms com-
patible with the current alarm Sy, 4, i.e.,

My = {(j,p) pefl,... 01} ,5€{1,...,D,},
and ||z — 2 p|| < Umax (€ —p)} %)

and let ( - )1.,,, denote the sub-vector composed of the first m
entries of the vector. Then, we give the following

Algorithm 1 (Computes {F}, ¢, ), ¢}, for £ = 1,...,L and
k=1,...,D/}).
1. Initialization: ¢ = 1
Fork=1,...,D;
Frpq =X
Ten= (k0 - 0)
2. Recursion: £ =2,...,L
Fork=1,...,Dy

A =+ max F. , lM o
Fio= PTGy, P if M #
Akt otherwise
(Thm)1om O -+ 0.k 0 -+ 0),
if My ¢ # @, where
= £-th entr
T th entry (h,m)=arg max F},
(J,P)EMu ¢
(0---0k0---0), otherwise

4.2. Complexity analysis

The complexity of Algorithm 1 is ruled by the innermost
loop, which requires to check the constraints between sy, ¢
and s;,, forj = 1,...,D,, p = 1,...,£ — 1, to obtain
the set My . Since { = 2,...,Land k = 1,..., Dy, the
number of operation needed by Algorithm 1 is in the or-
der of Y7, Dy Zﬁ;i D,. Notice now that {D,}L | is a
sequence of i.i.d. random variables. Specifically, each D,
is the sum of two independent Binomial random variables,
and its mean is (M N — K)a + K(1 — ), where K = 1
under Hy, and KX = 0 under Hy. Therefore, the aver-
age number of operations of Algorithm 1 is in the order of
L(L—1)[(MN—-K)a+K (1—f3)]?, i.e., quadratic in the num-
ber of integrated frames and in the average number of can-
didate detections per frame, and the average computational
complexity is O((LM Na)?).

Recall now that the complexity of the Viterbi-based rou-
tine is O(LM Nv2,,).* Therefore, if & = 0(vmax/VLMN),
then the average complexity of Algorithm 1 is smaller that
that of the Viterbi algorithm. Observe, finally, that if 7 is
chosen so that & = O(1/(Lv/MN)), then the number of op-
erations required by Algorithm 1 is in the same order as that
required by the first stage to evaluate the M N LLR’s, so that
the complexity of the proposed detection architecture is equal
to that of the single-frame detector, i.e., O(MN).

5. NUMERICAL RESULTS

We consider a sensor with V. = M = 100 and a target
evolving according to a random walk with independent tran-

31n the recursive step of the Viterbi algorithm a maximization on the ad-
missible afferent states is to be performed for each of the M NV resolution el-
ements. Since the cardinality of this set is in the order of v2,, (which may be
dependent of M and N), the computational complexity is O(LM Nv2,.).
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—L=4 (proposed detector)
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Fig. 2. PD vs « (in logarithmic scale) for different values v,
(in pixels per frame), PFA = 1072, and sNR = 8 dB.

sitions along the two directions, so that the infinity norm is
used in (2), (4), and (5). The random variables z, (i, j) are
exponentially distributed with fy(z) = e %19 )(2) and
fi(z) = (1 + snR)~le =/ (SN (), where SNR is the
signal-to-noise ratio. The memory of the detector is L = 4,
and the performance of the test is assessed in terms of prob-
ability of false alarm (PFA), i.e., accept H; under Hy, prob-
ability of correct detection (PD), i.e., accept H; under H1,
and root mean square error (RMSE) on the estimated target
position. For the sake of comparison, we report the cases
of standard single-frame detection (L = 1), MFD with raw
input-data (L > 1 and o = 1), and the MFD procedure con-
sidered in [9, 10]. The plots have been obtained using the
Monte Carlo method with 6 - 10° independent realizations of
batches of L frames.

Fig. 2 shows PD versus a for PFA = 1072, L = 4, and
different values of vy, while Fig. 3 reports the correspond-
ing RMSE on the position estimate. A large gain with respect
to the single-frame detector is observed for all the inspected
velocities in terms of both PD and RMSE on the position esti-
mate. Interestingly, the dependence of PD on « is not mono-
tonic when vy,x > 0, since two conflicting effects are play-
ing. On the one hand, large values of « allow to take more
observations of the target during the observation window; on
the other, small values of o guarantee that most of the false
alarms in the data set have been removed, so that the cardinal-
ity of the search set R’ is reduced. When v,x = 0, instead,
R’ has the smallest cardinality, equal to M N irrespective of
a: in this case MFD (which reduces to pixel-wise incoherent

—L=4 (proposed detector)
- --L=4 (detector in [9,10])
-x- L=1 (single-frame detector)
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Fig. 3. RMSE on the estimated position vs « (in logarithmic
scale) for different values vyax (in pixels per frame), PFA =
1072, and sNR = 8 dB.

integration) achieves its best performance, which degrades as
« is decreased. Finally, notice that the TBD strategies pro-
posed here is equivalent to that in [9, 10] for raw input data
(o = 1), but it is superior for censored data in terms of both
PD and RMSE, and the gain increases as « is decreased: this
due to the fact that the procedure in [9, 10] does not handle
a missed observation of the target at the end of the process-
ing window, so that its performance converges to that of the
single-frame detector when o — 0.

6. CONCLUSION

A novel procedure for MFD of a Markov target has been
proposed here. Its core is a dynamic programming algo-
rithm to perform TBD on a set of pre-processed observations.
The complexity analysis showed that proper selection of the
threshold in the pre-processing stage permits to have the same
computational complexity as the single-frame detector, while
simulations demonstrated that large gains with respect to the
single-frame detector and to the MFD procedure of [9,10] can
be obtained.
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