
DETECTING RANDOM WALKS HIDDEN IN NOISE:
PHASE TRANSITION ON LARGE GRAPHS

Ameya Agaskar1,2 and Yue M. Lu1

1Harvard University, Cambridge, MA 02138, USA
2MIT Lincoln Laboratory, Lexington, MA 02420, USA

Email: {aagaskar, yuelu}@seas.harvard.edu

ABSTRACT

We consider the problem of distinguishing between two hypothe-

ses: that a sequence of signals on a large graph consists entirely of

noise, or that it contains a realization of a random walk buried in

the noise. The problem of computing the error exponent of the opti-

mal detector is simple to formulate, but exhibits deep connections to

problems known to be difficult, such as computing Lyapunov expo-

nents of products of random matrices and the free entropy density of

statistical mechanical systems. We describe these connections, and

define an algorithm that efficiently computes the error exponent of

the Neyman-Pearson detector. We also derive a closed-form formula,

derived from a statistical mechanics-based approximation, for the er-

ror exponent on an arbitrary graph of large size. The derivation of

this formula is not entirely rigorous, but it closely matches the em-

pirical results in all our experiments. This formula explains a phase

transition phenomenon in the error exponent: below a threshold SNR,

the error exponent is nearly constant and near zero, indicating poor

performance; above the threshold, there is rapid improvement in per-

formance as the SNR increases. The location of the phase transition

depends on the entropy rate of the random walk.

Index Terms— Neyman-Pearson detection, random walks, hid-

den Markov processes, Lyapunov exponent, phase transitions

1. INTRODUCTION

Detecting a hidden Markov process is a fundamental problem in sta-

tistical signal processing, with broad applications (see, e.g., [1]–[5]).

The central issues are to derive the optimal detectors and to under-

stand their performance within different signal-to-noise ratio (SNR)

regimes. We consider this problem in the setting that the hidden

Markov process is a signal generated by a random walk on a large

graph and corrupted with additive white Gaussian noise. Our goal

is to distinguish between this hypothesis and the null hypothesis that

the observations made on the graph consist entirely of noise.

A scenario in which this problem arises is the detection of an in-

truder via a sensor network; the motion of a potential intruder might

be modeled as a random walk on a graph representing the network,

and one is tasked with testing the hypothesis that an intruder is cur-

rently present based on noisy measurements from each sensor.

We will describe the optimal detector for this hypothesis testing

problem and analyze its asymptotic performance via the (type II) er-

ror exponent [6], which completely characterizes the asymptotic rate

of decay of the probability of miss as more data is collected, with
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the probability of false alarm held fixed. Using tools from statistical

mechanics [7,8], we derive a closed-form approximation for the error

exponent, which reveals an important phase transition phenomenon:

below a threshold SNR which depends on the entropy of the random

walk, the optimal detector performs very poorly and does not improve

with marginal improvements to the SNR; but above the threshold the

error exponent improves almost linearly with SNR.

1.1. Related and Prior Work

Detecting a continuous Gauss-Markov process in Gaussian noise is

a classical signal processing problem that has been extensively stud-

ied (see, e.g., [9, 10].) Hypothesis testing that tries to distinguish

between two different finite-state Markov chains based on noiseless

realizations is also well-understood [11]–[13]. In this work, we focus

on the related problem of detecting random walks on finite graphs

(which are finite state Markov chains) based on observations that are

perturbed by additive Gaussian noise. These observations do not sat-

isfy the Markov property and are not jointly Gaussian, making the

problem a difficult one.

The structure of the optimal detector for a finite-state Markov

chain in noise was addressed in [1, 14]. We are interested in going

further and characterizing the asymptotic performance of the opti-

mal detector by computing the error exponent. For the Gauss-Markov

case, a closed-form expression for the error exponent was derived

by Sung et al. [2] using a state space representation. Our problem

turns out to be more challenging. Leong et al. [4] described a nu-

merical technique to find the error exponent for detecting a two-state

Markov chain in noise by approximating the solution to a certain in-

tegral equation. Little is known about computing the error exponents

for detecting general Markov chains with more than two states; this

is the focus of our work.

Our problem of finding the detection error exponent is also re-

lated to computing the entropy rate of hidden Markov processes

(HMPs), a long-standing problem in information theory. Jacquet et

al. [15] studied a two-state Markov chain observed through a binary

symmetric channel and showed that computing the entropy rate of

the underlying HMP is equivalent to finding the top Lyapunov expo-

nent of the product of an infinite sequence of random matrices [16],

a problem known to be difficult [17]. They, and others, focused on

local asymptotic approximations to the entropy rate by deriving its

partial derivatives with respect to various parameters of the system

(e.g. [15,18,19]).

In this paper, we study the detection error exponent when the

underlying graph (i.e., Markov chain) is large, a context that, to our

knowledge, has not been addressed before. The high-dimensional

setting allows us to use tools from large sample theory [20] and sta-

tistical mechanics [7,8] to reach a closed-form approximation for the

error exponent, and to uncover a phase transition phenomenon in the
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detector performance.

1.2. Paper Outline and Summary of Contributions

In Section 2 we first mathematically formulate the hypothesis-testing

problem, and then describe the optimal detector and define its error

exponent. We provide in Section 3 several alternative expressions for

the likelihood ratio, and give a simple Monte Carlo algorithm for nu-

merically computing the error exponent. Our main contributions are

presented in Section 4 and Section 5. Using the random energy model

(REM) from statistical mechanics [8], we derive in Section 4 an exact

asymptotic expression for the error exponent when the random walk

takes place on a large unweighted and complete graph. This result

is then extended in Section 5 to an analytic expression approximat-

ing the error exponent for arbitrary graphs. Based on a form of the

asymptotic equipartition theorem for Markov chains [19] and again

on the REM model, our derivations in reaching the general formula

for arbitrary graphs are not entirely rigorous, but simulation results

demonstrate the approximation’s accuracy. They also illustrate the

phase transition effect predicted by the analytic formula. We con-

clude the paper in Section 6.

2. PROBLEM STATEMENT

Given a sequence (yi)
N
i=1, yi ∈ R

K , we consider the problem of

testing the following hypotheses:

H0 : yi = zi; (1)

H1 : yi = f(si) + zi, i = 1, . . . , N,

where zi
i.i.d∼ N (0,Σ) is the noise process and (si)

N
i=1 ∈ {1, . . . ,M}N

is the N -step trajectory-sequence of a homogeneous random walk

on a connected graph with M vertices. This random walk can be

described by a Markov chain with an M × M one-step transition

matrix P . We let f : {1, . . . ,M} → R
K be a function that assigns

a vector to each state, so that f(s) is the observable “signature” of

the state s.

In this paper, we consider the special case with independent and

identically-distributed (i.i.d.) noise (so Σ = σ2IK ), K = M , and

the state map f(m) = em, where {em}Mm=1 is the standard basis in

R
M . In this case, we can think of each realization yi as a dynamic

process on a weighted graph, having at each time step some value at

each vertex in the graph. UnderH0, the process is just noise, i.i.d. in

time and space. UnderH1, a “particle” undergoes a random walk on

the graph, and at each time step the data consist of an impulse at the

current location of the particle corrupted with i.i.d. Gaussian noise.

The more general case, as in (1), will be studied further and presented

in a follow-up work.

To simplify the notation, we will concatenate the column vectors

yi to form a matrix Y N , whose entry yk,l is the kth entry of yl. By

the Neyman-Pearson Lemma [6], the most powerful test of a given

size compares the likelihood ratio to a threshold and rejectsH0 if the

ratio surpasses a threshold:

δN (Y N ) =

{
1 if LN (Y N ) > τN

0 otherwise,
(2)

where LN (Y N )
def
= Pr(Y N |H1)

Pr(Y N |H0)
. Several expressions for the likeli-

hood ratio will be given in the sequel.

We consider the (type-II) error exponent η of the Neyman-

Pearson detector, which is the exponential decay rate of the miss

probability under a fixed false alarm probability as the number of

observations increases. To be precise [2],

η
def
= − lim

N→∞

1

N
logPmiss

(
δN
)
. (3)

The error exponent can be computed as [2]

η = − lim
N→∞

1

N
logLN (Y N ) (4)

where the limit requires almost sure convergence underH0.

The natural question to ask is how η changes with the parameters

of the problem: the SNR, given by 1/σ2, and the graph on which

the random walk takes place. We address this problem by provid-

ing a close-form expression approximating the error exponent in the

asymptotic limit of large graphs.

3. COMPUTING THE ERROR EXPONENT

To begin, we compute the likelihood ratio given data {yi}Ni=1. We

suppose that the initial state is chosen according to the probability

vector π0, where (π0)k = Pr(s1 = k) > 0 for k = 1, . . . ,M ,

and that the elements of the transition matrix P are pij = Pr(sk =
j|sk−1 = i).

Then

LN(Y N ) =
∑

S=(s1,s2,...,sN )

Pr(S) exp

(
N∑

i=1

ysi,i − 1/2

σ2

)

(5)

= e−N/(2σ2)
π

T
0 D1PD2P · · ·DN−1PDN1

where the second equality was shown in [14], with 1 denoting a vec-

tor of all ones and Di
def
= diag

[
exp(

y1,i
σ2 ), . . . , exp(

yM,i

σ2 )
]
. Here,

yk,l are i.i.d. zero-mean Gaussian with variance σ2, as underH0.

It then follows from (4) that the error exponent is given by the

almost sure limit

η =
1

2σ2
− lim

N→∞

1

N
logπT

0 D1PD2P · · ·DN−1PDN1 (6)

=
1

2σ2
− lim

N→∞

1

N
log ||D1PD2P · · ·DNP ||⋆

︸ ︷︷ ︸
γ

, (7)

where ||·||⋆ is any matrix norm (e.g., 2-norm or 1-norm). The equiva-

lence between (6) and (7) can be established by noting that the quan-

tities inside the logarithms of both formulae are equal to within a

finite, constant multiplicative factor, which vanishes in the limit due

to the logarithm and division by N . Due to space constraint, we omit

the proof of this claim, which can be verified by using the Cauchy-

Schwarz inequality and the equivalence of finite-dimensional norms.

We note that the second term, γ, in (7) denotes the exponen-

tial (growth or decay) rate of a product of i.i.d. random matrices—

namely, the matrices DiP . Such product of random matrices has a

long history in mathematics and statistical physics, and the quantity γ
is often referred to as the (top) Lyapunov exponent in the literature. In

a classical paper [16], Furstenberg and Kesten showed that the almost

sure limit in (7) is well defined, and that it is equal to its expectation.

Incidentally, this result also guarantees that our error exponent given

in (4) is well defined.

Computing the Lyapunov exponent analytically is known to be

hard [17]. It generally requires solving an integral equation to obtain

the invariant measure of a continuous diffusion process on a real pro-

jective space [21]. In low dimensions this can be done with numerical

quadrature [4], but this is not tractable for our high dimensional prob-

lem. In Algorithm 1, we present a simple Monte Carlo approach to

directly approximate the Lyapunov exponent.
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Algorithm 1 Estimate-Lyapunov-Exponent

v0 ← 1√
M
1

for i = 1→ N do

zi ∼ N (0, 1
σ2 IM );DN+1−i ← diag(ezi)

xi ← ||DN+1−iP vi−1|| {Any norm will do.}
vi ← DN+1−iP vi−1/xi

end for

γ̂N ← 1
N

∑N
i=1 log xi

Proposition 1. The output γ̂N of Algorithm 1 converges, as N tends

to infinity, almost surely to the Lyapunov exponent γ.

Proof. We use the fact that each vi is unit norm and recursively ex-

pand vN :

1 = ||vN || =
∣∣∣∣

∣∣∣∣
D1PvN−1

xN

∣∣∣∣

∣∣∣∣

=

∣∣∣∣

∣∣∣∣
D1PD2PvN−2

xNxN−1

∣∣∣∣

∣∣∣∣ = . . . =

∣∣∣∣

∣∣∣∣
D1P · · ·DNPv0

xNxN−1 · · ·x1

∣∣∣∣

∣∣∣∣ .

So we obtain

lim
N→∞

γ̂N = lim
N→∞

1

N

N∑

i=1

log xi = lim
N→∞

1

N
log(x1x2 · · ·xN )

= lim
N→∞

1

N
log ||D1P · · ·DNP v0|| = γ,

where the fact that v0 has no zero entries as well as the equivalence

of finite-dimensional norms ensures the last equality.

In the sequel, we will describe an analytic approximation for η,

and we will use Algorithm 1 to compute the error exponents of a

given Markov chain P at various SNRs and compare these numerical

results to the analytic approximation.

4. RANDOM WALKS ON COMPLETE GRAPHS

We present in this section a special case of the problem that can be

solved exactly in the limit of large graph size M . Suppose that the

random walk takes place on a complete graph with loops: every ver-

tex is connected to every other vertex and itself, with equal transi-

tion probabilities. The random walk is thus just i.i.d. draws from

{1, . . . ,M}, and the transition matrix P = 1
M
11

T . To compute the

error exponent, we return to the likelihood expression (5). Using the

fact that the almost sure limit is equal to the limit in expectation [16]

and the fact that the state sequence is i.i.d., we have

η =
1

2σ2
− lim

N→∞

1

N
E log

M∑

s1=1

· · ·
M∑

sN=1

M−N exp

(
N∑

i=1

ysi,i
σ2

)

= log(M) +
1

2σ2

− lim
N→∞

1

N
E log




(

M∑

s1=1

e
ys1,1

σ2

)

· · ·




M∑

sN=1

e
ysN ,N

σ2









= log(M) +
1

2σ2
− E log

M∑

s=1

exp
( ys
σ2

)
, (8)

where ys
i.i.d.∼ N

(
0, σ2

)
.

We know of no simple way to compute the last term in (8). How-

ever, it becomes tractable if we take an appropriate limit as the graph

size M grows very large. In fact, in this limiting case, it is equivalent

to the solution of a well-known problem in statistical mechanics: the

free entropy density of the random energy model (REM) [8].

In statistical mechanics, a system’s macroscopic behavior can be

determined by computing thermodynamic potentials such as the free

entropy; these potentials depend on the energy levels of each of the

system’s “microstates”. The REM is a simplified system in which

there are 2n microstates, each of which has independent, Gaussian-

distributed energy with zero mean and variance n/2. This model has

been fully characterized in the asymptotic regime [22], and by mak-

ing the appropriate substitutions, we can use it to obtain an expression

for the error exponent.

To that end, we let the system size n = log2(M), β =√
2 log 2

σ2 logM
and the energy levelsEs = −ys

√
logM

2σ2 log 2
∼ N (0, n/2)

for 1 ≤ s ≤ 2n = M . In the literature, the parameter β is referred to

as the inverse temperature. It follows from (8) that

η = log(M) +
1

2σ2
− n · 1

n
E log

2n∑

s=1

exp (−βEs)

︸ ︷︷ ︸
Φ(n)(β)

. (9)

As the system size n grows, Φ(n)(β) converges to Φ(β), the free

entropy density of the random energy model. This is the limiting

case we are interested in.

To find Φ(β), it is assumed that n→∞, and the density of states

with energies in a neighborhood of nE is found to leading exponen-

tial order in n. This density is then used to integrate exp(−βE)—
with the integral approximating the desired sum. The resulting ex-

pression is [8]

Φ(β) =

{
log 2 + β2

4
, if β < 2

√
log 2√

log 2β, otherwise.
(10)

Substituting in our values for the REM parameters, and adding in a

correction term to account for finite n (which for practical reasons

will be necessary, as n is only logarithmic in M ), we obtain

η
.
=





0, if 1

σ2 < 2 logM
1

2σ2 + logM −
√

2 logM 1
σ2 + log logM

2
√

2σ2 logM
, otherwise,

(11)

where
.
= indicates exact asymptotic equality for very large M . Due

to space constraints, we will leave the detailed derivation of this ex-

pression to a follow-up work.

The expression (11) indicates an interesting phase transition:

when the SNR (i.e., 1/σ2) is below a threshold, the error exponent

for large M is nearly zero, indicating poor performance; above the

threshold, there is rapid improvement as the SNR increases. It is also

interesting to note that the threshold in (11), 2 logM , is exactly equal

to twice the entropy of a uniform distribution on {1, 2, . . . ,M}. In

the next section, we will extend this result to arbitrary graphs.

5. GENERAL GRAPHS

Returning to (5) we can rewrite the error exponent as

η =
1

2σ2
− lim

N→∞

1

N
log

∑

S∈paths(P,N)

Pr(S) exp

(
N∑

i=1

y
(si)
i

σ2

)

,

(12)

where paths(P,N) is the set of all length-N sample paths of the

Markov chain. Using a form of the asymptotic equipartition the-

orem for Markov chains [19], for large N there is a typical set
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Fig. 1. Error exponent curves for two graphs. The solid black curve is the numerically computed error exponent. The dashed red curve is the

proposed analytic approximation. The shaded area represents the predicted sub-threshold regime where the performance is poor. The curves

for two graphs (shown in insets) are plotted. Left: a random geometric graph, M = 1000, H = 2.1 nats. Right: a cycle graph, M = 5000, H =

0.693 nats. At the same SNR level, the higher the entropy rate of the Markov chain, the worse the detector performance. The theoretical curve

deviates slightly from experiments only in a small region around the phase transition point.

typ(P,N) of roughly exp(NH(P )) paths S each having probability

Pr(S) ≈ exp(−NH(P )), where H(P ) is the entropy rate of the

Markov chain. If the Markov chain is irreducible and aperiodic, it

has a unique stationary distribution π, and the entropy rate is given

by

H(P ) = −
∑

i

πi

∑

j

Pij logPij , (13)

where Pij are the transition probabilities. The entropy rate gives

the expected value—under the equilibrium distribution—of the con-

ditional entropy of the next state given the current state. For example,

for a complete, unweighted graph with loops, H(P ) = logM , the

largest possible value for Markov chains of size M . Meanwhile, a

cycle graph can be shown to have H(P ) = log 2, even though the

random walk does not converge to a steady-state distribution.

By omitting atypical paths from the sum in (12), the error expo-

nent can be approximated as

η ≈ 1

2σ2
+H(P )− lim

N→∞

1

N
log

∑

S∈typ(P,N)

exp

(
N∑

i=1

y
(si)
i

σ2

)

=
1

2σ2
+H(P )− lim

N→∞

1

N
log

eNH(P )∑

S=1

exp(−βES)

︸ ︷︷ ︸
Φ(β)

H(P )
log 2

, (14)

where we now set β =
√

2 log(2)

H(P )σ2 and ES =
√

H(P )

2 log(2)σ2

∑N
i=1 y

(si)
i

∼ N
(
0, NH(P )

2 log(2)

)
. We will approximate Φ(β) by the free entropy of

a system with exp(NH(P )) = 2NH(P )/ log(2) random states. This

approximation is not exact because the state energy levels are not

independent. However, we will proceed as if they were independent

and check the resulting expression numerically. Substituting the

REM solution [scaled by H(P )/ log(2)], and again adding back the

correction term from the complete graph model, gives

η ≈





0, if 1

σ2 < 2H(P )
1

2σ2 +H(P )−
√

2H(P ) 1
σ2 + log logM√

2σ2 logM
, otherwise.

(15)

The phase transition in (15) indicates that below a certain thresh-

old SNR, the performance of the optimal detector is poor, whereas

above the threshold SNR, the error exponent grows almost linearly

with the SNR. Note that the phase transition point increases with the

entropy rate of the Markov chain. This is to be expected—knowledge

of the Markov chain parameters is far less informative when the en-

tropy rate is high (e.g., for a complete graph) than when it is low (e.g.,

for a cycle graph), so our detector performance is better in the latter

case than the former.

Two main approximations were made to obtain (15). First, we

used an asymptotic equipartition theorem to simplify the expression

for the probability of any given state sequence in (14). Second, to

apply the random energy model, we assumed that the state energy

levels were independent, which is not true. Despite these approxima-

tions, numerical results indicate that the expression is valid. Figure

1 shows a comparison between the error exponents computed using

Algorithm 1 and the closed form expression (15) for random walks

on two different graphs. Curves are plotted illustrating the effect of

SNR on the error exponent. The empirical curve follows the analyt-

ical approximation very closely. The phase transition is also quite

evident—below a certain threshold, performance is very poor, then

rises rapidly as the SNR is increased. We have done extensive numer-

ical tests on various other graphs, and have found the match between

the theoretical and empirical curves to be quite consistent.

6. CONCLUSIONS

We considered the problem of detecting a random walk on a graph

hidden in additive Gaussian noise. We described an algorithm for

numerically estimating the error exponent of the optimal Neyman-

Pearson detector, and derived a closed-form expression approximat-

ing the error exponent. Numerical simulations show that the closed-

form expression closely matches the empirical results. The error

exponent exhibits phase transition behavior, indicating that perfor-

mance of the optimal detector is poor below a threshold SNR (which

depends on the entropy rate of the Markov chain) but then improves

when the SNR is increased past the threshold. Future work will en-

tail more rigorously justifying the closed-form approximation, and

generalizing to arbitrary HMPs.
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