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ABSTRACT

Motivated by applications of wireless sensors powered by en-
ergy harvested from the environment, we study non-Bayesian
quickest change detection problems with a stochastic energy
constraint. In particular, a wireless sensor powered by renew-
able energy is deployed to detect the change of probability
density function in a random sequence. The energy in the sen-
sor is consumed by taking observation and is replenished ran-
domly. The sensor cannot take observations if there is no en-
ergy left. Our goal is to design power allocation scheme and
detection strategy to minimize the delay between the time the
change occurs and an alarm is raised. Two types of average
run length (ARL) constraint, namely an algorithm level ARL
and a system level ARL, are considered. We show that a low
complexity scheme, in which the sensor takes observations as
long as the battery is not empty coupled with the Cumulative
Sum (CUSUM) test for detection, is optimal for the setup with
the algorithm level ARL constraint, and is asymptotically op-
timal for the setup with the system level ARL constraint.

Index Terms— CUSUM test, energy harvested sensor,
non-Bayesian quickest detection, sequential detection.

1. INTRODUCTION

Recently, the study of sensor networks powered by renewable
energy harvested from the environment has attracted signifi-
cant attention [1, 2, 3, 4, 5]. Compared with sensor networks
powered by batteries, sensor networks powered by renew-
able energy have several unique features such as unlimited
life span and high dependence on the environment, etc. Op-
timal power management schemes for each individual sensor
and scheduling protocols for the whole network have been
developed to maximize utility functions of communication
related metrics such as channel capacity, transmission delay
or network throughput. However, the researches on signal
processing related performance metrics for renewable energy
powered sensors have not been investigated. Detection de-
lay, which is one of such performance metrics, is important
for sensor networks in many applications. For example, if a
sensor network is deployed to monitor the health of a bridge,
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then the detection delay between the time when a structural
problem occurs and the time when an alarm is raised is of
interest.

In this paper, we focus on non-Bayesian quickest detec-
tion problem, which was first studied by G. Lordon [6] and
M. Pollak [7]. Since no prior information about the change
point is required, this non-Bayesian setup is very attractive
for practical applications. In the classic setups, there is no en-
ergy constraint and the sensor can take observations at every
time slot. In this paper, we extend Lorden’s and Pollak’s prob-
lems to sensors that are powered by renewable energy. In this
case, the energy stored in sensor is replenished by a random
process and consumed by taking observations. The sensor
cannot take observations if there is no energy left. Hence, the
sensor cannot take observation at every time instant anymore.
The sensor needs to plan its use of power carefully. Moreover,
the stochastic nature of the energy replenishing process will
certainly affect the performance of change detection schemes.
Since the energy collected by the harvester in each time in-
stant is not a constant but a random variable, this brings new
optimization challenges.

There have been some existing works on quickest detec-
tion problem taking the sample cost into consideration. [8]
considers the design of detection strategy that strikes a bal-
ance between the detection delay, false alarm probability and
the number of sensors being active. Based on the observa-
tions from sensors at each time slot, the fusion center decides
how many sensors should be active in the next time slot to
save energy. [9] studies the Bayesian quickest detection tak-
ing the average number of observations into consideration,
and the authors propose the low complexity DE-Shiryeav al-
gorithm which is asymptotically optimal as false alarm prob-
ability goes to zero. In [10, 11], the authors propose the
DE-CUSUM extending the previous result into non-Bayesian
problem formulation. [12] discusses the Bayesian quickest
detection problem with a constraint that the sensor could take
only a finite number of observations.

The remainder of the paper is organized as follows. The
mathematical model is given in Section 2. Section 3 presents
the solutions for binary energy arriving model. Section 4,
presents asymptotically optimal solutions for general energy
arriving model. Numerical examples are given in Section 5.
Section 6 offers concluding remarks. Due to space limita-
tions, we present only main ideas of proofs. Details of proofs
can be found in [13].
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2. PROBLEM FORMULATION

Let {Xk, k = 1, 2, . . .} be a sequence of random variables
whose distribution changes at a fixed but unknown time t. Be-
fore t, the {Xk}’s are independent and identically distributed
(i.i.d.) with probability density function (pdf) f0; after t, they
are i.i.d. with pdf f1. The pre-change pdf f0 and post-change
pdf f1 are perfectly known by the sensor. We use Pt and Et to
denote the probability measure and the expectation with the
change happening at t, respectively, and use P∞ and E∞ to
denote the case t = ∞.

For the energy harvested wireless sensor, its energy ar-
rives randomly both in time and in amount. Specifically, we
denote ν = {ν1, ν2, . . . , νk, . . . } as the energy arriving pro-
cess with νk ∈ V = {0, 1, 2, . . .}, while {νk = 0} means
that no energy is collected in time slot k, and {νk = i} means
i units of energy is collected at time k. If we use P ν to de-
note its probability measure (correspondingly, Eν is denoted
the expectation under P ν), the pmf of νk can be expressed as
pi = P ν(νk = i). {νk} is i.i.d. over k.

The sensor can decide how to allocate the collected en-
ergy. Let µ = {µ1, µ2, . . . , µk, . . . } be the power allocation
strategy, where µk ∈ {0, 1}. µk = 1 means that the wire-
less sensor spends a unit of energy on taking an observation
at time slot k, while µk = 0 means that no energy is spent at
k and hence no observation is taken.

The energy harvested wireless sensor has a finite battery
with capacity C. Denote Ek as the energy left in the battery in
time slot k, it would be affected by the energy arriving process
and the energy utilizing process:

Ek = min[C,Ek−1 + νk − µk].

The energy allocation policy µ must obey the causality
constraint, namely the energy cannot be used before it is har-
vested. The energy causality constraint can be written as

Ek ≥ 0 k = 1, 2, . . . . (1)

We use U to denote the set of µ that satisfy (1).
The sensor spends energy to take observations. The ob-

servation sequence is denoted as {Zk, k = 1, 2, . . .}, where

Zk =

{
Xk if µk = 1
ϕ if µk = 0

. (2)

We call an observation Zk a non-trivial observation if µk = 1,
i.e, if the observation is taken from the environment. Denote{
X̃k

}
as the non-trivial observation sequence, which is the

subsequence of {Zk} with all its non-trivial observations.
{Zk} are not necessarily conditionally (conditioned on

the change point) i.i.d. due to the existence of µk. The distri-
bution of Zk is related to both µk and Xk. Therefore, we use
Pµ
t and Eµ

t to denote the probability measure and expectation
of the observation sequence {Zk} with change happening at
t, respectively.

In this paper, we want to find a stopping time T , at which
the sensor will declare that a change has occurred, and a

power allocation µ that jointly minimize the detection delay.
Specifically, we consider three problem setups. The first one
is Lorden’s quickest detection problem [6] with an algorithm
level ARL constraint, which is formulated as

(P1) min
µ∈U,T∈T

d(µ, T ),

s.t. E∞[N ] ≥ η, (3)

where T is the set of all stopping time with Eµ
t [T ] < ∞, N

is the total number of non-trivial observations taken by the
sensor before it claims that the change has happened and

d(µ, T ) = sup
t≥1

dt(µ, T ),

dt(µ, T ) = esssupEµ
t

[
(T − t+ 1)+|Ft−1

]
, (4)

where Fk = σ{Z1, · · · , Zk}. In this formulation, we put a
lower bound η on the average number of observations taken
before a false alarm is raised. The larger η is, the less fre-
quently a false alarm will be raised. Since this constraint is
independent of the power utilizing process µ and energy ar-
riving process ν, this problem setup is more robust against the
variation of the ambient environment.

The second problem considered in this paper is Lorden’s
quickest detection problem with a system level ARL con-
straint, which is formulated as

(P2) min
µ∈U,T∈T

d(µ, T ),

s.t. Eµ
∞[T ] ≥ γ. (5)

In this formulation, a lower bound γ is set on the expected
duration to a false alarm. In contrast to the previous case, this
constraint depends on the power allocation µ, which is further
related to the energy arriving process ν. Therefore, this setup
is more sensitive to the environment.

In some applications, Pollak’s formulation [7] is of inter-
est since its delay metric is less conservative than that of Lor-
den’s formulation. In our context, the Pollak’s formulation
can be written as

(P3) min
µ∈U,T∈T

sup
t≥1

Eµ
t [T − t|T ≥ t] ,

s.t. Eµ
∞[T ] ≥ γ. (6)

Since the optimal solution for Pollak’s formulation is still
open [14], we discuss only the asymptotic solution for this
formulation in this paper.

3. BINARY ENERGY ARRIVING MODEL

In this section, we consider a relative simple case: the binary
energy arriving model. Specifically, we assume ν ∈ V =
{0, 1}, that is, the energy harvester can collect one unit energy
at most in one time slot. We denote p = P ν(νk = 1). The
conclusion in this section will provide valuable insights for
the more general model considered in Section 4.
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Throughout this paper, we use L(·) to denote the likeli-
hood ratio (LR), and use l(·) = logL(·) to denote the log
likelihood ratio (LLR). For the observation sequence {Zk},
LR is defined as

L(Zk) =

{
f1(Zk)
f0(Zk)

, if µk = 1

1, if µk = 0
. (7)

The CUSUM statistic and the Page’s stopping time can be
written as [6]

Sk = max
1≤q≤k

 k∏
i=q

L(Zi)

 = max[Sk−1, 1]L(Zk),

and
Tp = inf{k ≥ 0|Sk ≥ B},

respectively.

3.1. Optimal solution for (P1)

In this subsection, we show the power allocation µ∗ = ν and
CUSUM strategy is optimal for (P1). An important proposi-
tion of this proposed strategy is as follows:

Proposition 3.1. The power allocation scheme µ∗ = ν and
Page’s stopping time Tp together achieve an equalizer rule,
i.e., dt(µ∗, Tp) = d1(µ

∗, Tp),∀t ≥ 1.

Lemma 3.2. The optimal power allocation strategy for (P1)
is µ∗ = ν, and the optimal stopping time is Tp, in which the
threshold B is a constant such that E∞[N ] = η.

Proof. Outline: Our proof have two steps. In the first step,
we show that Tp is optimal for any given power allocation µ.
In the second step, we show µ∗ = ν is optimal under Tp.

Remark 3.3. µ∗ = ν indicates µ∗
k = νk for every k, that is,

the sensor spends the energy taking observation immediately
when it obtains one from the environment. Therefore, we term
µ∗ as immediate power allocation scheme in the following.

The following proposition shows the performance of
(µ∗, Tp) in terms of the detection delay and the algorithm
level ARL.

Proposition 3.4. Suppose B > 1, then

E∞[N ] =
E∞[κ]

1− P∞(F0)
, (8)

d(µ∗, Tp) =
1

p

E1[κ]

1− P1(F0)
, (9)

where κ is the stopping time

κ = min

{
m ≥ 1

∣∣∣∣∣
m∑

k=1

l
(
X̃k

)
̸∈ (0, logB)

}
,

and F0 denotes the event{
κ∑

k=1

l
(
X̃k

)
≤ 0

}
.

3.2. Asymptotical optimality for (P2) and (P3)

It is generally difficult to solve (P2) and (P3) since both the
detection delay and the system level ARL are related to the
power allocation µ. In the following, we show that the pro-
posed scheme (µ∗, Tp) is asymptotically optimal for (P2) and
(P3) as γ → ∞.

We first provide a lower bound on the the detection delay
for any scheme.

Lemma 3.5. As γ → ∞,

inf{d(µ, T ) : Eµ
∞[T ] ≥ γ}

≥ inf

{
sup
t≥1

Eµ
t [T − t|T ≥ t] : Eµ

∞[T ] ≥ γ

}
≥ 1

p

| log γ|
I

(1 + o(1)), (10)

where I is the KL-divergence of f1 and f0.

The following lemmas show that this lower bound in
Lemma 3.5 can be obtained by (µ∗, Tp) for both (P2) and
(P3).

Lemma 3.6. (µ∗, Tp) is asymptotically optimal for (P2) and
(P3) as γ → ∞. Specifically,

d(µ∗, Tp) ∼
1

p

| log γ|
I

. (11)

sup
t≥1

Eµ∗

t [Tp − t|Tp ≥ t] ∼ 1

p

| log γ|
I

. (12)

Proof. Outline: Since (µ∗, Tp) is an equilizer rule for (P2),
we have

d(µ∗, Tp) = d1(µ
∗, Tp) = Eµ∗

1 [Tp] ≤ Eµ∗

1 [Ts,1],

where Ts,1 is the stopping time of one-sided SPRT:

Ts,1 = inf

{
k ≥ 1

∣∣∣∣∣
k∏

i=1

L(Zi) ≥ B

}
.

For (P3), similar to the discussion in Theorem 6.16 in [15],
we have

Eµ∗

t [Tp − t|Tp ≥ t] ≤ Eµ∗

1 [Ts,1].

Then, the statement follows Proposition 4.11 in [15], by
which we have Eµ∗

1 [Ts,1] ∼ 1
p
| log γ|

I .

4. GENERAL ENERGY ARRIVING MODEL

For the general case that νk ∈ V = {0, 1, 2, . . .} with pi =
P ν(νk = i), we propose to use a generalized immediate
power allocation strategy:

µ̃∗
k =

{
1 if Ek−1 + νk ≥ 1
0 if Ek−1 + νk = 0

,
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that is, the sensor takes observation as long as the battery is
not empty. We notice that µ̃∗ degenerates to the immediate
power allocation under binary energy arriving model. We
show that the µ̃∗ coupled with Tp is asymptotically optimal
for (P2) and (P3).

Similar to the case in Section 3, we first have the following
lower bound on the detection delay for any scheme.

Lemma 4.1. As γ → ∞,

inf{d(µ, T ) : Eµ
∞[T ] ≥ γ}

≥ inf

{
sup
t≥1

Eµ
t [T − t|T ≥ t] : Eµ

∞[T ] ≥ γ

}
≥ 1

p̃

| log γ|
I

(1 + o(1)), (13)

where p̃
.
= Eν [µ̃∗]

The proposed scheme achieves the above mentioned
lower bounds for both (P2) and (P3).

Lemma 4.2. (µ̃∗, Tp) is asymptotically optimal for (P2) and
(P3) as γ → ∞. Specifically,

d(µ̃∗, Tp) ∼
1

p̃

| log γ|
I

, (14)

sup
t≥1

Eµ̃∗

t [Tp − t|Tp ≥ t] ∼ 1

p̃

| log γ|
I

. (15)

5. NUMERICAL SIMULATION

In this section, we give two numerical examples to illus-
trate the results obtained in our paper. In these numerical
examples, we assume that the pre-change distribution f0 is
N (0, σ2) and the post-change distribution f1 is N (0, P+σ2).
The signal-to-noise ratio is defined as SNR = 10 logP/σ2.

In the first scenario, we illustrate the relationship between
the detection delay and E∞[N ] under setup (P1) for binary
energy arriving model. The simulation result for SNR =
0dB is shown in Figure 1. In this figure, the blue line with
circles is the simulation result for p = 0.2, the green line with
stars and the red line with squares are the results for p = 0.5
and p = 0.8, respectively. The black dash line is the perfor-
mance of the classic Lorden’s problem, which is served as a
lower bound because the sensor can take observation at every
time slot. As we can see, for a given η, the detection delay is
in inverse proportion to the energy arriving probability p. The
larger p is, the closer is the performance to the lower bound.

In the second scenario, we examine the asymptotic opti-
mality of (µ̃∗, Tp) for (P2) and (P3) under general energy ar-
riving model. In the simulation, we assume the battery size
C = 3, and V = {0, 1, . . . , 4} with energy arriving pmf
p0 = 0.8, p1 = 0.1, p2 = 0.05, p3 = 0.025, p2 = 0.025.
In this case, we can find p̃ = Eν [µ̃∗] = 0.9964. We set
SNR = 5dB. The simulation result is shown in Figure 2.
In this figure the blue line with circles is the performance of
(P2). The red line with squares is the Performance of (P3),
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Fig. 1. Detection delay v.s. the algorithm level ARL
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Fig. 2. Detection delay v.s. the system level ARL

and the black dash is calculated by | log γ|/p̃I . Along all
the scales, the Pollak’s detection delay is smaller than Lor-
den’s detection delay, and these three curves are parallel to
each other, which confirms the proposed strategy, (µ̃∗, Tp), is
asymptotically optimal because the difference between them
is negligible as γ → ∞.

6. CONCLUSION

In this paper, we have studied the non-Bayesian quickest de-
tection problem with a casual energy constraint. Three non-
Bayesian quickest detection problem setups, namely Lorden’s
problem under the algorithm level ARL, Lorden’s problem
under the system level ARL and Pollak’s problem under the
system level ARL, have been considered. For the binary en-
ergy arriving model, we have shown that the immediate power
allocation coupled with Page’s stopping time is optimal for
the first problem, and is asymptotically optimal for the sec-
ond and the third problems. For the multi-energy arriving
model, we have shown that the generalized power allocation
along with Page’s stopping time is asymptotically optimal for
the second and the third problems.
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