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ABSTRACT

In the signal processing literature, many methods have been pro-
posed for solving the important model comparison and selection
problem. However, most of these methods only find the most likely
model or only work well under particular circumstances such as a
large number of data points or a high signal-to-noise ratio (SNR).
One of the most successful classes of methods is the Bayesian in-
formation criteria (BIC) and in this paper, we extend some of the
recent work on the BIC. In particular, we develop methods in a full
Bayesian framework which work well across a large/small number
of data points and high/low SNR for either real- or complex-valued
data originating from a regression model. Aside from selecting the
most probable model, these rules can also be used for model averag-
ing as they assign a probability to each candidate model. Through
simulations on a polynomial trend model, we demonstrate that the
proposed rules outperform other rules in terms of detecting the true
model order, de-noising the noisy signal, and making predictions of
unobserved data points. The simulation code is available online.

Index Terms— Model comparison and selection, Bayesian in-
formation criterion

1. INTRODUCTION

In many science and engineering applications involving model-
based data analysis, the true model structure of the data (if there is
one) is often unknown or so complicated that it is intractable to work
with. Therefore, a number of simpler models, which are believed
to represent the data set accurately, are compared in the light of the
data and one, several, or all of these candidate models are used to
analyse the data or to make predictions about missing or future data
points. Examples of typical model comparison problems in signal
processing are to find the number of non-zero regression parameters
in linear regression [1, 2], the number of sinusoids in a periodic sig-
nal [3, 4], the orders of an autoregressive moving average (ARMA)
process [5, 6], and the number of clusters in a mixture model [7, 8].
The model comparison and selection problem is typically formulated
in the following way. A data set x =

[
x(t0) · · · x(tN−1)

]T
consisting of either real- or complex-valued numbers is observed,
and we assume that these N data points originate from some un-
known model. Since we are unsure about the true model, we select
a set of K candidate parametric modelsM1,M2, . . . ,MK which
we wish to compare in the light of the data x. Here, we assume that
the candidate models are regression models of the form

Mk : x = s+ e = Zkαk + e (1)

where s and e form a Wold decomposition of the real- or complex-
valued data x into a predictable part and a non-predictable part,
respectively. The N × lk system matrix Zk is assumed known

whereas the lk linear parameters in αk and the noise parameters
are unknown. We focus on the regression model for multiple rea-
sons. First, many of the common signal models can be written as or
approximated by it [1, 9]. For example, a sinusoidal model can be
written as the regression model in (1) after the frequencies have been
estimated1. Second, the regression model is analytically tractable
and therefore results in simple algorithms and facilitates insight into
the behaviour of the algorithm.

In the signal processing literature, many methods have been pro-
posed for detecting the most likely model from the set of candidate
models [11–13]. This problem is often referred to as model selec-
tion and popular examples of model selection rules are the Akaike
information criterion (AIC) [14], the Bayesian information crite-
rion (BIC) [15], the asymptotic MAP criteria [9], and many others
[16–21]. Contrary to the model selection rules, model comparison
methods assign probabilities to all candidate models, and all mod-
els (not just the most likely one) can therefore be used to estimate
parameters, de-noise the data, and predict future data points. Only
a few model comparison methods have been suggested in the sig-
nal processing literature (see [12] and the references therein) aside
from the Bayesian methods which have been widely studied in the
statistical literature [1, 2, 22–24].

1.1. Contributions and Relation to Prior Work

Recently in [25], the authors argue that the BIC is one of the most
successful model selection rules when derived properly as recom-
mended in [9]. For the regression model in (1), the BIC is based on
analytical approximations of the log-marginal likelihood [25]

ln p(x|Mk) = −N ln(σ̂2
ML)/r − ln(|Îk|)/r +O(1) (2)

where σ̂2
ML is the maximum likelihood (ML) estimate of the noise

variance, and r is either 1 if x ∈ CN or 2 if x ∈ RN . Moreover, Îk
is the observed Fisher information matrix (FIM) given by

Îk =

[
σ̂−2

MLZ
H
k Zk 0

0 σ̂−4
MLN/r

]
. (3)

The various forms of the BIC emerge by neglecting first order terms
O(1) and by considering the behaviour of Îk for various values of
N and σ̂2

ML, and the structure of the system matrixZk. For example,
the most common form of the BIC appears if Îk grows linearly inN
so that ln(|Îk|) = lk ln(N) +O(1). For a polynomial trend model,
however, it can be shown that ln(|Îk|) = (lk+1)2 ln(N)+O(1) [9,
25]. In [25], a few new forms of the BIC is derived for the cases of a
small/large N and a low/high signal-to-noise ratio (SNR). Based on
the work in [2], we here supplement the work in [25] for regression
models by developing three methods in a full Bayesian framework

1Note that the framework considered in this paper can also be extended
to handle non-linear parameters such as the frequency parameters [10].
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which we refer to as e-BIC, lp-BIC, and h-BIC. Contrary to the rules
suggested in [25], however, the user does not have to decide whether
he/she is in a situation with a large/small N and a high/low SNR as
this is automatically determined by the e-BIC, the lp-BIC, and the h-
BIC. Moreover, there is no need to investigate the behaviour of Îk
which might be difficult in some situations such as for non-nested
polynomial trend models. This improvement is a consequence of
using a full Bayesian framework in which a proper prior distribution
is elicited for the linear parameters. Here, we use the g-prior [2]
which depends on a single important hyperparameter, and we give
a novel physical interpretation of it in terms of the SNR. Another
consequence of using a full Bayesian framework is that the e-BIC,
the lp-BIC, and the h-BIC can be used for both model selection and
comparison. Finally, the computational complexity of the e-BIC and
the lp-BIC is similar to that of most other information criteria.

2. MODEL COMPARISON IN REGRESSION MODELS

The e-BIC, the lp-BIC, and the h-BIC are all derived in the same
Bayesian framework and are two approximate and one exact solu-
tions to the model comparison problem. Before these rules are de-
rived in Sec 2.2, the Bayesian model is explained which consists of
an observation model and prior distributions on the model parame-
ters and models. For model selection and comparison, the elicitation
of proper prior distributions on the model parameters is very impor-
tant as improper prior distributions such as a flat prior on the lin-
ear parameters cause the simplest model to be preferred, regardless
of the information in the data [10, 22]. This is known as Bartlett’s
paradox. We therefore give a few arguments for the prior model in
Sec. 2.1 and give a new physical interpretation of the important hy-
perparameter g of the g-prior in Sec. 2.2.1.

2.1. Bayesian Model

2.1.1. The Observation Model

For the non-predictable part e, we assume a (complex) normal dis-
tribution with probability density function (pdf)

p(e|σ2) =
exp

(
−eHe
rσ2

)
[rπσ2]N/r

=

{
CN (e;0, σ2IN ) , r = 1

N (e;0, σ2IN ) , r = 2
(4)

where (·)H denotes conjugate matrix transposition, and IN is the
N × N identity matrix. To simplify the notation, we use the non-
standard notation Nr(·) to refer to either the complex normal distri-
bution with pdf CN (·) for r = 1 or the real normal distribution with
pdf N (·) for r = 2. Besides being mathematically tractable, argu-
ments such as maximisation of the entropy [26, 27] and the Cramér-
Rao bound [28] also favour the white Gaussian noise (WGN) as-
sumption on e [29]. If the noise is known to be coloured, the meth-
ods in this paper are still useful if combined with a linear pre-filter.
The WGN assumption implies that the observation model is

p(x|αk, σ2,Mk) = Nr(x;Zkαk, σ
2IN ) . (5)

2.1.2. The g-Prior

As the dimension of the vector αk of linear parameters varies be-
tween models, a proper prior distribution must be assigned on it [22].
For regression models, the Zellner’s g-prior given by [30]

p(αk|σ2, g,Mk) = Nr(αk;0, gσ2[ZHk Zk]−1) (6)

has been widely adopted since it leads to analytically tractable
marginal likelihoods and is easy to understand and interpret [2]. The
g-prior can be interpreted as the posterior distribution on αk arising
from the analysis of a conceptual sample x0 = 0 given a uniform
prior on αk and a scaled variance gσ2 [31]. The covariance matrix
of the g-prior also coincides with a scaled version of the inverse
FIM of the linear parameters. Consequently, a large prior variance is
therefore assigned to parameters which are difficult to estimate. The
noise variance σ2 is a common parameter and has the same meaning
in all models and can therefore be given an improper prior [10, 22].
We therefore use Jeffreys’ prior p(σ2) = (σ2)−1 which is scale
invariant. That is, it includes the same prior knowledge whether we
parametrise the model in terms of the noise variance σ2, the standard
deviation σ, or the precision parameter λ = σ−2.

2.1.3. The Models

For the prior on the models, we select a uniform prior of the form
p(Mk) = K−1IK(k) where K = {1, . . . ,K}. However, another
prior can easily be used in our framework (see (7) below).

2.2. Bayesian Model Comparison

From Bayes’ theorem, we have that the posterior distribution on the
models has the probability mass function (pmf)

p(Mk|x) =
BF[Mk;Mb]p(Mk)∑K
i=1 BF[Mi;Mb]p(Mi)

(7)

where Mb is some base model, all other models are compared
against, and the Bayes’ factor is given by

BF[Mj ;Mi] =
p(x|Mj)

p(x|Mi)
,
mj(x)

mi(x)
. (8)

The function mk(x) is an unnormalised marginal likelihood whose
normalisation constant must be the same for all models. Work-
ing with mk(x) rather than the normalised marginal likelihood
p(x|Mk) is usually much simpler. Moreover, p(x|Mk) does not
even exist if an improper prior such as the Jeffreys’ prior on the
noise variance is used. Given g, the marginal likelihood is given by

p(x|g,Mk) =

∫ ∞
0

∫
Ak

p(x|αk, σ2,Mk)

× p(αk|σ2, g,Mk)p(σ2)dαkdσ
2 (9)

where Ak is either the k-dimensional set of real- or complex-valued
numbers. By performing the integration in (9), it can be shown that

p(x|g,Mk) ∝ mk(x|g) =
mN (x)

(1 + g)lk/r

(
σ̂2
N

σ̂2
k(g)

)N/r
(10)

where we have defined

σ̂2
k(g) ,

xH(IN − g
1+g

P k)x

N
= σ̂2

N

(
1− g

1 + g
R2
k

)
(11)

R2
k ,

xHP kx

xHx
(12)

mN (x) , Γ(N/r)(Nπσ̂2
N )−N/r (13)

The matrixP k is the orthogonal projection matrix ofZk, and σ̂2
k(g)

is asymptotically equal to the ML estimate of the noise variance in
the limit σ̂2

ML = limg→∞ σ̂
2
k(g). The estimate σ̂2

N is the estimated
noise variance of the null modelMN which is the all-noise model
(lk = 0) and has the unnormalised marginal likelihood mN (x). If
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we select the null model to be the base model, the Bayes’ factor
given g is thus

BF[Mk;MN |g] =

[
σ̂2
N/σ̂

2
k(g)

]N/r
(1 + g)lk/r

=
(1 + g)(N−lk)/r

(1 + g[1−R2
k])N/r

.

(14)
From (7), we see that the posterior probabilities of the models are
proportional to the Bayes’ factors for a uniform prior on the mod-
els. The most likely model is found by maximising BF[Mk;MN |g]
over k. That is,

k̂ = arg max
k∈K

[
−N ln

(
σ̂2
k(g)

)
− lk ln(1 + g)

]
(15)

which has the same form as most of the well-known information
criteria. From (14) and (15), we also see why the value of g is so
vital. In the extreme case of g → ∞ corresponding to a flat prior
on the linear parameters, BF[Mk;MN |g]→ 0 for allMk 6=MN ,
and the null model is therefore always preferred, regardless of the
information in the data (Bartlett’s paradox). Any finite choice of g
will clearly also affect both the estimate of the noise variance and
the last term in (15) which is often referred to as the penalty term.
However, the value of g is seldomly known in practical applications
so we either need to elicit a particular value for it or integrate it out.

2.2.1. Interpretation of g

The hyperparameter g can be given a simple physical interpretation
in terms of the average SNR and this might be used to select a value
for g if one has knowledge of the average SNR in the data. Although
a few authors have hinted this connection previously [3,32], the con-
nection established here is to the best of our knowledge new. Define
the average SNR of the data as

η ,
E[sHs]

E[eHe]
=
αHk Z

H
k Zkαk
Nσ2

. (16)

Since the random vector yk = [(gσ2)−1ZHk Zk]1/2αk is a standard
(complex) normal vector when αk is distributed as in (6), it can be
shown that

q =
2

r
yHk yk =

2

r

αHk Z
H
k Zkαk
gσ2

(17)

has a chi-square distribution with pdf χ2(q; 2lk/r). Since the SNR
is related to q by η = rq/(2N), the prior distribution on the SNR is
therefore a gamma distribution with pdf

p(η|g,Mk) =
(N/(rg))lk/r

Γ(lk/r)
ηlk/r−1 exp

(
−Nη
rg

)
(18)

and with mean E[η] = glk/N . Usually, the SNR is expressed in dB
by the relation η̃ = 10 log10(η). Interestingly, 10 log10(E[η]) is the
the mode of the pdf on η̃. That is, if one knows the SNR in dB of the
data, the value of g could be selected as

g = (N/lk)10η̃/10 . (19)

Note that this interpretation also holds for models in which Zk is
parametrised by unknown and non-linear parameters such as sinu-
soidal frequencies.

2.2.2. The Emperical BIC (e-BIC)

If the SNR is unknown, the value of g can also be estimated. A
local empirical Bayesian estimate is the maximiser of the marginal
likelihood w.r.t. g and given by [2]

gEB
k = arg max

g∈R+

mk(x|g) = max

(
NR2

k − lk
(1−R2

k)lk
, 0

)
(20)

where R+ is the set of non-negative real-valued numbers. Inserting
(20) in (15) yields the e-BIC for R2

k > lk/N as

k̂ = arg max
k∈K

[
−N ln

(
σ̂2

ML
)

− lk
(

ln(1 + gEB
k )−N ln(1− lk/N)/lk

)]
(21)

For N � lk, the e-BIC is approximately

k̂ = arg max
k∈K

[
−N ln

(
σ̂2

ML
)
− lk

(
ln(1 + gEB

k ) + 1
)]

(22)

From this approximation and the SNR interpretation of g, several in-
teresting observations can be made. When the SNR is large enough
to justify that gEB

k � 1, the e-BIC is basically a corrected BIC which
takes the estimated SNR of the data into account. The penalty coef-
ficient grows with the estimated SNR and the chance of over-fitting
thus becomes very low, even under high SNR conditions where the
AIC, but also the BIC tend to overestimate the model order [33].
When the estimated SNR on the other hand becomes so low that
gEB
k � 1, the e-BIC reduces to an AIC-like rule which has a con-

stant penalty coefficient in N . In the extreme case of an estimated
SNR of zero, the e-BIC reduces to the so-called no-name rule [11].
Interestingly, empirical studies [9, 34] have shown that the AIC per-
forms better than the BIC when the SNR in the data is low, and this is
automatically captured by the e-BIC. The e-BIC therefore performs
well across all SNR values as we demonstrate in Sec. 3.

2.2.3. The hyper-BIC (h-BIC) and the Laplace-BIC (lp-BIC)

Instead of treating g as a fixed quantity, it can also be treated as
a random variable and integrated out of the marginal likelihood in
(10). For mathematical convenience, we assign the hyper-g prior to
g with pdf [2]

p(g|δ) = (δ/r − 1)(1 + g)−δ/r , δ > r . (23)
The hyperparameter δ should be selected in the interval r < δ ≤
2r [2]. Besides having some desirable analytical properties, p(g|δ)
reduces to the Jeffreys’ prior and the reference prior when δ = r
[35]. However, since this prior is improper, it can only be used when
the prior probability of the null model is zero. Marginalising the
marginal likelihood over g yields the Bayes’ factor of the h-BIC

BF[Mk;MN ] =

∫ ∞
0

mk(x|g)

mN (x)
p(g|δ)dg

=
δ − r

lk + δ − r 2F1

(
N

r
, 1;

lk + δ

r
;R2

k

)
(24)

where 2F1 is the Gaussian hypergeometric function [36, p. 314].
WhenN is large orR2

k is very close to one, numerical and computa-
tional problems with the evaluation of the Gaussian hypergeometric
function may be encountered [37]. From a computational point of
view, it may therefore not be advantageous to marginalise (24) w.r.t.
g analytically. Instead, the Laplace approximation can be used as
a simple alternative. By making the Laplace approximation for the
parametrisation τ = ln g, the Bayes’ factor of the lp-BIC can be
shown to be [10]

BF[Mk;MN ] = BF[Mk;MN |ĝ]
ĝ(δ − r)
r(1 + ĝ)δ/r

√
2πγ(ĝ) (25)

where we have defined
β , [(N − r)R2

k + 2r − k − δ]/r (26)

ĝ ,
rβ +

√
r2β2 + 4r(1−R2

k)(lk + δ − r)
(1−R2

k)(lk + δ − r) (27)

γ(ĝ) ,
r

ĝ

[
N(1−R2

k)

[1 + ĝ(1−R2
k)]2
− (N − k − δ)

(1 + ĝ)2

]−1

. (28)
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Fig. 1. Performance of various model selection methods. The number of correctly detected models and the MSE of the detected model order
are shown in the upper and lower left plots, respectively. In the upper right plot, the denoising performance is shown as a function of the SNR
while the lower right plot shows the prediction error as a function of the sample number at an SNR of 15 dB.

Computing the Bayes’ factor of the lp-BIC is much faster than com-
puting the Bayes’ factor of the h-BIC.

3. SIMULATIONS

Due to the limited space, we cannot present all possible combi-
nations of a large/small N , a high/low SNR, and types of regres-
sion models. Therefore, we here present a typical simulation re-
sult for a subset of the model selection rules, but encourage the in-
terested reader to try other configurations and rules by modifying
the simulation code which is available at http://kom.aau.dk/
~jkn/publications/publications.php. The simulation
presented here is similar to one of the simulations in [25]. We con-
sider a polynomial trend model of a maximum degree of L = 5
from which we observe N = 40 data points. Although the e-BIC,
the lp-BIC, and the h-BIC can handle the situation of K = 2L mod-
els formed by selecting all possible subsets of columns fromZk, we
here only consider the K = L + 1 nested models since the proper
forms of the BIC derived in [25] only holds for this particular case.
The performance of the various model selection criteria is evaluated
via Monte Carlo simulations consisting of 5000 runs for every SNR
which was varied in steps of 1 dB from 0 dB to 50 dB. In contrast
to the simulations in [25], however, we do not fix the model and the
value for the linear parameters in between runs, but generate a model
and the model parameters at random for every run as recommended
in [12]. In the simulations, we evaluated the model selection, the de-
noising, and the prediction performance, and the results are shown
in Fig. 1. In the upper left plot, the percentage of correctly detected
models is shown. The e-BIC, the lp-BIC, and the h-BIC perform
nearly equally well and better than the other rules. The BICN and

the B̃ICN,SNR from [25] perform well for high SNRs whereas the
AIC performs well at low SNRs. These observations support our
claim in Sec 2.2.2. The same observations can be made in the lower
left plot where the mean-squared error (MSE) of the detected model
order given by E(l̂k) = (lk − l̂k)2 is shown. In the upper right
plot, the de-noising performance is shown. Again we see that the e-
BIC, the lp-BIC, and the h-BIC outperform the other rules and have
nearly the same de-noising performance as the Oracle who knows
the true model order. Finally, the lower right plot shows the predic-
tion performance as a function of the sample number at an SNR of
15 dB. The e-BIC, the lp-BIC, and the h-BIC have nearly identical
performance which is only slightly worse than the performance of
the Oracle and much better than the performance of the other model
selection rules.

4. CONCLUSION

We have here presented three model selection and comparison meth-
ods which we have named the e-BIC, the lp-BIC, and the h-BIC.
They have all been developed in the same Bayesian framework in
which the e-BIC and the lp-BIC can be viewed as approximations to
the exact solution h-BIC. The methods differ in how they handle the
hyperparameter g of the g-prior which is very important in connec-
tion with model selection and comparison. Therefore, we also gave
a new physical interpretation of g in terms of the average SNR of
the noisy data. Through simulations, the e-BIC, the lp-BIC, and the
h-BIC were demonstrated to perform well across a large/small num-
ber of data points and a high/low SNR. Moreover, these methods
were demonstrated to outperform other methods in terms of model
selection, de-noising, and prediction performance.
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