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ABSTRACT

We present a generalized sequential probability ratio test for com-

posite hypotheses wherein the thresholds are updated in an adaptive

manner based on the data recorded up to the current sample using

the parametric bootstrap. The resulting test avoids the asymptotic as-

sumption usually made in earlier works. The increase of the average

sample number of the proposed method is not significant compared

to the sequential probability ratio test which is based on known pa-

rameters, especially in a low SNR region. In addition, the probability

of false alarm and the probability of missed detection are maintained

below the preset values. A comparison shows that the thresholds

based on the parametric bootstrap are in close agreement with the

thresholds based on Monte-Carlo simulations.

Index Terms— Bootstrap, sequential probability ratio test,

composite hypothesis, spectrum sensing, cognitive radio

1. INTRODUCTION

The sequential probability ratio test (SPRT) was pioneered by Abra-

ham Wald in 1943 in a confidential report, which was then published

in 1945 [1]. His initial work on the general theory of the cumulative

sum [2] has provided a tool to derive the operating characteristic and

the average sample number as the performance indices of the SPRT.

The main idea behind the SPRT is to pre-specify the probability of

detection errors (false alarm and missed detection) and minimize the

average of required sample number [1, 3]. This scheme results in a

random sample number with its average smaller than the correspond-

ing best fixed sample number detector. The work of Bussgang and

Middleton [4] applies Wald’s SPRT to sequentially detect signals

in noise. The case of correlated observation is also treated. Sub-

sequently, some analytical results and modified procedures on the

SPRT also have been introduced, such as in [5–7]. In addition, since

the SPRT has an average sample number (ASN) larger than the cor-

responding fixed sample number detector when the parameter value

lies between the two simple hypotheses, some methods to reduce the

sample number in this condition have been proposed [8,9]. They are

known as truncated SPRT. Implementation of sequential analysis to

a distributed environment can be found, for example, in [10, 11].

Recently, the superiority of the sequential detector in reducing

the sample number is an attractive choice in spectrum sensing for

cognitive radio (CR) [12]. This is because a short duration of sens-

ing time (a small sample number) is required in spectrum sensing

to improve agility of the CR users, which successively increase the

throughput of a CR network and reduce the degree of interference to

the licensed network. Some examples of the implementation in this

emerging research field are [13–17]. However, addressing sequential

detections for composite hypotheses is only few in literature.

The bootstrap, a computer-based method for assigning measures

of accuracy to statistical estimates [18], is used here. From a data

manipulation point of view, the main idea encapsulated by the boot-

strap is to simulate as much of the real world probability mecha-

nism as possible, in which any unknowns are replaced with esti-

mates from the observed data. The application of the bootsrap to

various signal processing techniques can be found in [19, 20] and

references therein. In addition, bootstrap-based detection methods

have been successfuly implemented in [21–23]. However, the lit-

erature on bootstrapping methods for sequential detections is very

scarce.

Some studies in [24, 25] on sequential detection for composite

hypotheses have focused on asymptotic optimality and properties for

the general non-iid case. In this setup, the probability of false alarm

and the probability of missed detection are assumed to converge to

zero or the constant thresholds are assumed to converge to infinity.

The present work, in some sense, is based on the same framework

as [16]. However, the authors in [16] mainly concentrate on finding a

bound on the error term of the log-likelihood ratio in the asymptotic

sense, such that the threshold margin for the upper and the lower

thersholds, which are functions of the sample number, can be re-

placed by some positive constants. Eventually, constant thresholds

are used in this earlier work. In general, the present paper differs

from the previous work in several aspects. First, the SPRT is ex-

tended to cope with the composite hypothesis problem by combin-

ing the generalized SPRT and the parametric bootstrap to find the

thresholds. Second, the thresholds are not constant but updated for

each new sample recorded and also suitable for small sample num-

ber, not only in the asymptotic sense. Hence, a smaller average sam-

ple number is possible. Last, exhaustive simulations to determine

the thresholds in worst case scenario such as in [16] are avoided.

The remainder of the paper is organized as follows. The SPRT

for simple hypothesis is briefly explained in Section 2. Section 3

begins with signal model and discusses subsequently in detail the

generalized SPRT and the proposed bootstrap based SPRT for com-

posite hypothesis. An example and simulation results are presented

in Section 4. Finally, the paper is concluded with Section 5.

2. THE SIMPLE HYPOTHESIS CASE

The sequential probability ratio test (SPRT) for binary hypothesis

testing is designed based on simple hypothesisH0 against simple al-

ternativeH1 [1,3]. Let f(~xN ) denotes the density function of a ran-

dom column vector ~xN = [x(1) x(2) · · · x(N)]T which represents

the iid observations of a signal up to the N th sample. The density

function f0(~xN) underH0 and f1(~xN) underH1 are assumed to be

exactly known. Then, the SPRT is optimum for minimizing the sam-

ple number for targeted probability of false alarm α and probability

of missed detection β among other tests [3]. The required sample

number is not determined in advance, but it is random, depending on

the statistics of the current observation. The test stops when either

the upper constant-threshold A or the lower B is crossed for the first
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time. In summary, the SPRT can be written as

Z̄N = log
f1(~xN)

f0(~xN)







≥ A, acceptH1

≤ B, acceptH0,

A < Z̄N < B, continue to observe

(1)

For the preset probability of false alarm α and missed detection β

that are much smaller than 1, the thresholds can be calculated from

Wald’s approximation [3]

A = log
1

α
, B = log β, (2)

to guarantee that the actual probability of false alarm Pf ≤ α and

missed detection Pm ≤ β.

3. THE COMPOSITE HYPOTHESIS CASE

The simple hypothesis approach is not suitable in most practical sce-

narios, since unknown parameters might exist which enforce to use

non-exact distributions. Therefore, we aim at extending the SPRT to

the composite hypothesis case. Suppose that the detector receives a

signal that is distributed according to

H0 : ~xN ∼ f0(~xN ; θ0), θ0 ∈ Θ0

H1 : ~xN ∼ f1(~xN ; θ1), θ1 ∈ Θ1 (3)

where θ0 and θ1 are the unknown parameters in the respective hy-

pothesis, and Θ0,Θ1 ⊂ Θ are disjoint parameter spaces, i.e. Θ0 ∩
Θ1 = ∅.

3.1. The Generalized SPRT

Note that the two parameters θ0 and θ1 in (3) are unknown. Hence,

we replace them by their maximum likelihood estimates (MLEs). As

in the case of a fixed sample number detector [26], the generalized

log-likelihood ratio (GLR) can then be written as

ẐN = log
f1(~xN ; θ̂

(N)
1 )

f0(~xN ; θ̂
(N)
0 )

(4)

where

θ̂
(N)
i = argmax

θi∈Θi

log (fi(~xN ; θi)) (5)

is the MLE assuming hypothesis Hi, i = 0, 1 is true. Meanwhile,

subscript or superscript N is to indicate the data has been recorded

up to the N th sample.

Furthermore, the two thresholds of the SPRT (2) cannot be used

directly in this setup. A threshold modification is required to com-

pensate the estimation errors, introduced by the MLEs. Otherwise,

it will lead to early terminations that increase the actual probabil-

ity of false alarm Pf and missed detection Pm. Note that we can-

not just increase A or decrease B by some constants to improve Pf

and Pm, since it will successively increase the average sample num-

ber. Meanwhile, the average of estimation errors is large for a small

N and vice versa. Hence, to reflect this condition, an appropriate

method is needed to set the thresholds adaptively based on N . In

this way, they should be large to tolerate large estimation errors for

N small and converge to (2) as N increases.

The generalized SPRT for composite hypotheses can now be de-

fined as [16]

ẐN







≥ AN , acceptH1

≤ BN , acceptH0,

AN < ẐN < BN , continue to observe

(6)

where ẐN is the GLR from (4). The upper threshold AN and the

lower BN are functions of the sample number N ,

AN = A+∆0
N , BN = B −∆1

N , (7)

where A and B are determined from (2), and ∆i
N ≥ 0, i = 0, 1, is

the modified value for the threshold at the N th stage under Hi. The

determination of ∆i
N will be elaborated in the following subsection.

3.2. The Bootstrap Based SPRT (B-SPRT)

The log-likelihood ratio ẐN in (6) can be considered as an estimate

of the log-likelihood ratio Z̄i
N in (1) under hypothesis Hi, i = 0, 1,

H0 : ẐN = log
f1(~xN ; θ̄1)

f0(~xN ; θ0)
+ log

(

f1(~xN ; θ̂
(N)
1 )

f1(~xN ; θ̄1)

f0(~xN ; θ0)

f0(~xN ; θ̂
(N)
0 )

)

= Z̄
0
N +∆Z

0
N

H1 : ẐN = log
f1(~xN ; θ1)

f0(~xN ; θ̄0)
+ log

(

f1(~xN ; θ̂
(N)
1 )

f1(~xN ; θ1)

f0(~xN ; θ̄0)

f0(~xN ; θ̂
(N)
0 )

)

= Z̄
1
N +∆Z

1
N , (8)

where ∆Zi
N is the error term underHi, i = 0, 1. The MLEs

H0 : θ̂
(N)
0

P
−→ θ0 θ̂

(N)
1

P
−→ θ̄1, θ0 ∈ Θ0, θ̄1 ∈ Θ1

H1 : θ̂
(N)
0

P
−→ θ̄0 θ̂

(N)
1

P
−→ θ1, θ̄0 ∈ Θ0, θ1 ∈ Θ1 (9)

in which

θ̄i = argmin
θ̌i∈Θi

KL(fj(~xN ; θj)||fi(~xN ; θ̌i)), i, j = 0, 1, i 6= j, (10)

and KL(fj ||fi) denotes Kullback-Leibler distance between distri-

butions fj and fi. Here
P
−→ denotes convergence in probability as

N → ∞. At stopping time N = NT , the probability of false alarm

Pf and missed detection Pm can then be written as

Pf = P (ẐNT
≥ ANT

, Z̄
0
NT
≥ A|H0)

+P (ẐNT
≥ ANT

, Z̄
0
NT

< A|H0)

≤ P (Z̄0
NT
≥ A|H0) + P (ẐNT

≥ ANT
, Z̄

0
NT

< A|H0)

≤ α+∆Pf (11)

Pm = P (ẐNT
≤ BNT

, Z̄
1
NT
≤ B|H1)

+P (ẐNT
≤ BNT

, Z̄
1
NT

> B|H1)

≤ P (Z̄1
NT
≤ B|H1) + P (ẐNT

≤ BNT
, Z̄

1
NT

> B|H1)

≤ β +∆Pm. (12)

Hence, we aim at minimizing ∆Pf and ∆Pm by finding appropriate

values for ∆0
N and ∆1

N of (7), respectively. Note that the thresholds

should be calculated at each N th stage since the stopping time NT

is not known in advance. Therefore, let the last terms of (11) and

(12) be expressed as functions of N

P (ẐN ≥ AN , Z̄
0
N < A|H0)

≤ P (|ẐN − Z̄
0
N | ≥ AN − A|H0)

= P (|∆Z
0
N | ≥ ∆0

N |H0) (13)

P (ẐN ≤ BN , Z̄
1
N > B|H1)

≤ P (|ẐN − Z̄
1
N | ≥ B −BN |H1)

= P (|∆Z
1
N | ≥ ∆1

N |H1). (14)
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Now, suppose that the two probabilities are pre-specified as tolerance

values to represent ∆Pf and ∆Pm

P (|∆Z
0
N | ≥ ∆0

N |H0) = ǫ0, P (|∆Z
1
N | ≥ ∆1

N |H1) = ǫ1. (15)

Accordingly, ∆i
N , i = 0, 1, can be found by using the parametric

bootstrap of (15) to finally get (AN , BN ) in (7).

In our setup, the thresholds at the (N + 1)th stage is calcu-

lated based on the observed data up to the N th sample. Hence,

upon receiving the (N + 1)th sample, the log-likelihood ratio

ẐN+1 is computed and then compared to the calculated thresholds

(AN+1, BN+1). In principle, the parametric bootstrap replaces any

unknown parameters with estimates and re-uses data to provide a

way to approximate distributional information, using the measured

sample as a basis. Suppose that N samples have been recorded and

are represented by ~xN . Let Fθ be the distribution of ~xN , parame-

terized by θ. Bs bootstrap replications of size N + 1 are generated

from parametric estimates of the population F̂
θ̂
(N)
i

by assuming Hi

is true, i.e.

H0 : F̂
θ̂
(N)
0

→ ~x
0b
N+1 = [x0b

1 · · ·x
0b
N+1]

T

H1 : F̂
θ̂
(N)
1

→ ~x
1b
N+1 = [x1b

1 · · ·x
1b
N+1]

T
, b = 1, · · · , Bs (16)

parameterized by θ̂
(N)
0 and θ̂

(N)
1 which are the MLEs from (5). Note

that we generate the bootstrap replications forH0 and H1 to get the

upper threshold AN and the lower threshold BN , respectively. Fur-

thermore, the log-likelihood ratios ẐN+1 and Z̄N+1 are computed

for all bootstrap replications b = 1, · · · , Bs of each assumed hy-

pothesis,

Ẑ
ib
N+1 = log

f1(~x
ib
N+1; θ̂

(N+1)ib
1 )

f0(~xib
N+1; θ̂

(N+1)ib
0 )

, Z̄
0b
N+1 = log

f1(~x
0b
N+1; θ̄1)

f0(~x0b
N+1; θ̂

(N)
0 )

,

Z̄
1b
N+1 = log

f1(~x
1b
N+1; θ̂

(N)
1 )

f0(~x1b
N+1; θ̄0)

, i = 0, 1, b = 1, · · · , Bs (17)

where θ̂
(N+1)ib
0 and θ̂

(N+1)ib
1 are the MLEs based on the bootstrap

data ~xib
N+1 from (16). Therefore, we have Bs times |∆Zib

N+1| =

|Ẑib
N+1 − Z̄ib

N+1| from which ∆i
N , i = 0, 1, is calculated. Note

that the resulting values |∆Zib
N+1|, b = 1, · · · , Bs, are first ranked

into increasing order to obtain |∆Zi1∗

N+1| ≤ |∆Zi2∗

N+1| ≤ · · · ≤

|∆Z
iB∗

s

N+1| for each hypothesis Hi, i = 0, 1. Therefore, ∆i
N , i =

0, 1, in (15) are estimated by ∆̂i
N , i = 0, 1, such that

#(|∆Z0b∗
N+1| ≥ ∆̂0

N |H0)

Bs

= ǫ0,
#(|∆Z1b∗

N+1| ≥ ∆̂1
N |H1)

Bs

= ǫ1,

(18)

where #(x) indicates cardinality. At this point, the modified thresh-

olds AN and BN in (7) can be determined. The algorithm of the

bootstrap based sequential probability ratio test (B-SPRT) is sum-

marized in Table 1.

4. EXAMPLE

As an example, we consider the following binary composite hypoth-

esis problem,

H0 : ~xN ∼ CN
(

0, σ2
0I
)

, 0 < σ
2
0 ≤ 1

H1 : ~xN ∼ CN
(

0, σ2
1I
)

, 1.1 ≤ σ
2
1 <∞ (19)

Table 1. Algorithm of B-SPRT

Step 1) Initialize α, β, A and B from (2), Bs, ǫ0, ǫ1

Step 2) Draw N = NS samples and obtain initial MLEs θ̂
(N)
1

and θ̂
(N)
0 from (5)

REPEAT

Step 3) Update the thresholds using the bootstrap:

→ Generate Bs bootstrap replications from (16)

→ For i = 0, 1, b = 1, · · · , Bs, compute

|∆Zib
N+1| = |Ẑ

ib
N+1 − Z̄ib

N+1|

→ Rank |∆Zib
N+1|, i = 0, 1, b = 1, · · · , Bs, into increasing

order: |∆Zi1∗

N+1| ≤ |∆Zi2∗

N+1| ≤ · · · ≤ |∆Z
iB∗

s

N+1|

→ Calculate ∆̂i
N+1, i = 0, 1 from (18) and update

the thresholds by (7)

Step 4) Draw next sample N ← N + 1 to obtain

MLEs θ̂
(N)
1 and θ̂

(N)
0

Step 5) Calculate the test statistic ẐN from (6)

UNTIL ẐN ≥ AN or ẐN ≤ BN

Step 6) If ẐN ≥ AN , acceptH1 and if ẐN ≤ BN , acceptH0

where I is the N ×N identity matrix. Therefore, the MLEs are

σ̂
2(N)
0 = min

{

1

N
~x
H
N~xN , 1

}

,

σ̂
2(N)
1 = max

{

1

N
~x
H
N~xN , 1.1

}

, (20)

and it is easy to verify that

H0 : σ̂
2(N)
0

P
−→ σ

2
0 σ̂

2(N)
1

P
−→ σ̄

2
1 = 1.1

H1 : σ̂
2(N)
0

P
−→ σ̄

2
0 = 1 σ̂

2(N)
1

P
−→ σ

2
1 . (21)

The log-likelihood ratio from (6) now becomes

ẐN =

(

1

σ̂
2(N)
0

−
1

σ̂
2(N)
1

)

~x
H
N~xN +N log

σ̂
2(N)
0

σ̂
2(N)
1

. (22)

For all simulations, the preset probability of false alarm α is

chosen to be equal to the preset probability of missed detection β =
α = 0.1 and NS = 1. We pre-specify the tolerance values in (18)

to be ǫ0 = ǫ1 = 0.05, and bootstrap replications are set to Bs =

100. Hence, the ∆̂i
N is the 5th largest of the ranked |∆Zib∗

N+1|, b =
1, · · · , Bs. All the results are generated using 2× 103 Monte-Carlo

runs. We quantify the underlying variance σ2 for 0.5 < σ2 = σ2
0 ≤

1 (under H0) and for 1.1 ≤ σ2 = σ2
1 ≤ 2 (under H1). In terms

of signal to noise ratio (SNR), the worst case scenario, SNR =
−10 dB, happens when σ2 lies at the boundary of the parameter

space, i.e. at σ2
1 = 1.1 underH1 and at σ2

0 = 1 underH0.

We apply the central limit theorem on the test statistic (22) under

H0 and H1 to calculate the minimum required sample number Nf

of the fixed sample number detector in Fig. 2, when Nf is large.

Then, we arrive at the following expression,

Nf ≈





Q−1(β)
(

σ2
1

σ2
0
− 1
)

+Q−1(α)
(

1−
σ2
0

σ2
1

)

σ2
1

σ2
0
+

σ2
0

σ2
1
− 2



 , (23)
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Fig. 1. The performance improvement of B-SPRT on Pf and Pm

compared to the generalized SPRT using constant thresholds A and

B (CT).

whereQ−1(·) is the inverse of the standard normal cumulative distri-

bution function. For this detector type, Nf is determined in advance

and cannot be changed over the unknown σ2 values in the parameter

spaces. Hence, it should be calculated such as to fulfill the require-

ment of β = α = 0.1 under the possible worst case scenario, i.e.

σ2
0 = 1 and σ2

1 = 1.1. In this case, (23) yields Nf ≈ 724 as

depicted in Fig. 2.
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Fig. 2. The ASN of the B-SPRT compared to the SPRT and its coun-

terpart of the fixed sample number detector (FSN).

To quantify the improvement of the B-SPRT in terms of the ac-

tual probability of false alarm Pf and probability of missed detec-

tion Pm, we compare it with a generalized SPRT whose two thresh-

olds are held constant, i.e. AN = A and BN = A. The result

is depicted in Fig.1 which indicates that for all permitted σ2 values

under each hypothesis, Pf and Pm are smaller than α = 0.1 and

β = 0.1, respectively. The performance improvement is significant

over the generalized SPRT with the constant thresholds, especially

when σ2 is near the boundaries of the parameter spaces (low SNR

region). Pf and Pm of both detectors decrease as σ2 departs from

the boundaries, which is a common symptom in sequential detec-

tions [3]. Therefore, setting the thresholds as functions of sample

number using the parametric bootstrap leads to convincing results in

sequential detections for composite hypotheses.

Fig.2 shows that the average sample number (ASN) of the B-

SPRT is less than that of the fixed sample number detector (FSN). It

also shows that the ASN of the B-SPRT is still convincing, relative

to the ASN of the SPRT which is based on known parameters. It is

approximately 1.1× the ASN of the SPRT when σ2 approaches the

boundaries and approximately 1.8× the ASN for σ2 ≪ 1 or σ2 ≫
1.1. For further validation, we compare the average of the upper

threshold AN and the lower BN of the B-SPRT for σ2 = 1 (H0) and

σ2 = 1.1 (H1), to the two thresholds calculated based on Monte-

Carlo simulations. Fig.3 shows that their thresholds are relatively

close and converge to the constant thresholds (CT) as the sample

number N approaches the ASN under each hypothesis. Note that for

σ2 = 1 and σ2 = 1.1, the ASNs of the B-SPRT are approximately

500 and 468, respectively, as can be extracted from Fig.2.
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Fig. 3. Thresholds AN and BN of B-SPRT under H0 and H1 com-

pared to the thresholds calculated based on Monte-Carlo simula-

tions.

The increase of computational cost due to the bootstrap in se-

quential detection is inevitable. Therefore, finding a more suitable

implementation for the bootstrap in a sequential test with a limited

increase of computational cost is essential and is subject of our future

work. However, in an era of exponentially declining computational

costs, bootstrap-based methods such as in the presented application

are becoming a bargain and more attractive. Based on these results,

the proposed method is a promising technique. It is suitable for the

situation where the time limitation is important such as in spectrum

sensing for cognitive radio, i.e. to solve the problem of the sensing-

throughput trade-off [27].

5. CONCLUSIONS

In this paper we have investigated how to apply the parametric boot-

strap in sequential detection for composite hypothesis testing. The

bootstrap is used to update the thresholds in an adaptive manner

based on current observations. Simulation results have shown that

the proposed method improves the probability of false alarm and

missed detection of the generalized sequential probability ratio test.

In addition, the ASN is comparable to the ASN of the SPRT, which

is based on known parameter values, especially in low SNR region.

Hence, the proposed method is an attractive candidate to be imple-

mented in spectrum sensing for cognitive radio where the time con-

straint is a critical issue.
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