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ABSTRACT

We address Random Distortion Testing (RDT), that is, the
problem of testing whether the Mahalanobis distance between
a random signal Θ and a known deterministic model θ0 ex-
ceeds some given τ > 0 or not, when Θ has unknown prob-
ability distribution and is observed in additive independent
Gaussian noise with positive definite covariance matrix. A
suitable optimality criterion for RDT is presented and the-
oretical results on optimal tests for this criterion are given.
Several applications of these results are presented and ana-
lyzed. They address the detection of signals in case of model
mismatch and the detection of deviations from model θ0.

Index Terms— Event testing, hypothesis testing, invari-
ance, Mahalanobis norm, random distortion testing, test with
maximal constant conditional power.

1. INTRODUCTION

In many signal processing applications, the observation cap-
tured by a sensor is assumed to be a d-dimensional real ran-
dom vector Y = Θ +X , where Θ is some random distortion
from a known deterministic model θ0 and X is noise inde-
pendent of Θ. Small deviations of Θ from its model θ0 can
be of poor interest for the user, who may want to detect big
enough ones only. It is thus relevant to test whether Θ lies
in a neighborhood of θ0 or not. If Θ is supposed to be de-
terministic, the Wald and Rao tests can cope with distortions
in a neighborhood of θ0 under the conditions of [1, p. 478,
Theorem VIII] or [2, Sec. 3, p. 53]. Motivated by situations
where the degree of uncertainty or the number of unknown pa-
rameters is so great that standard likelihood theory, including
the holy trinity (generalized likelihood ratio tests [3], Wald
and Rao tests) and robust tests derived from uncertainty mod-
els [4, III.E.2] may not apply to allow for possible distortions
of the model, we address the general case where Θ has un-
known distribution. Postponing to further work the case with
possibly nuisance parameters, we assume that X ∼ N(0,C)
with known positive definite covariance matrix C, which is
reasonable in many applications.

By taking into account directional variations induced by
the noise covariance matrix, the Mahalanobis norm [5] of

Θ − θ0 is relevant to evaluate how far Θ deviates from θ0.
This Mahalanobis norm is defined for any y ∈ Rd by ‖y‖ =√
yTC−1y where AT henceforth stands for the transpose of

any matrix or vector A. We then address Random Distor-
tion Testing (RDT), that is, the problem of testing whether
‖Θ − θ0‖ 6 τ or not, when we observe Y and the probabil-
ity distribution of Θ is unknown. By analogy with standard
terminology in statistical inference, we say that this problem
is the testing of the null event

[
‖Θ − θ0‖ 6 τ

]
against the

alternative event
[
‖Θ− θ0‖ > τ

]
on the basis of observation

Y and we summarize this problem by writing:

RDT:


Observation:Y = Θ +X

Θ and X independent,
Θ ∈M(Ω,Rd),
X ∼ N(0,C),

Null event:
[
‖Θ− θ0‖ 6 τ

]
,

Alternative event:
[
‖Θ− θ0‖ > τ

]
,

(1)
where M(Ω,Rd) stands for the set of all d-dimensional real
random vectors defined on (Ω,B,P). In contrast to usual
literature on statistical inference, we do not test a determin-
istic unknown parameter but the random parameter Θ with
unknown distribution, whereas standard approaches either as-
sume the parameters of the observation to be deterministic but
unknown or consider random parameters with known prior. It
must be noticed that RDT reduces to the detection of Θ in
noise when τ = 0. Beyond signal detection, RDT is think-
able any time a distortion from a nominal reference must be
detected, especially when a model for this distortion is hardly
feasible.

The following remark is the starting point of our approach
for solving the RDT problem of Eq. (1). Given any η > 0,
consider any test Tη such that, for any y ∈ Rd,

Tη(y) =

{
1 if ‖y − θ0‖ > η
0 if ‖y − θ0‖ 6 η.

(2)

Such a test will hereafter be called a thresholding test with
threshold height η. Basically, the purpose of such a test is to
compensate the variations induced by C. It is then expected
that the smaller ‖Y − θ0‖, the more probable the null event.
Given γ ∈ (0, 1), it can be proved that there exists a threshold
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value λγ(τ) ∈ [0,∞) such that

P
[
Tλγ(τ)(Θ +X) = 1

∣∣ ‖Θ− θ0‖ 6 τ
]
6 γ

for any Θ ∈ M(Ω,Rd). The quantity in the left hand side
(lhs) of this inequality can be proved to be the size of Tλγ(τ),
as defined by Eq. (4) below. In other words, it is not that dif-
ficult to devise a test that guarantees a specific size for RDT,
whatever the signal distribution. This has already been used
in [6]. The actual question is then what optimality, if any,
such a test may satisfy. The sequel presents our answer to this
question with several comments and applications. The proofs
of the results stated below are given in [7].

2. PROBLEM ANALYSIS

Consider any eigenvector decomposition C = U∆UT of C,
where the diagonal elements ξ1, ξ2, . . . , ξd of the diagonal
matrix ∆ = diag(ξ1, ξ2, . . . , ξd) are the eigenvalues of C and
U is a d × d orthogonal matrix. Put Φ = ∆−1/2UT. Now,
given any orthogonal matrix R, consider the affine transform
gR such that gR(y) = Φ−1RΦ(y−θ0)+θ0 for every y ∈ Rd.
The set of all these affine transforms gR associated with or-
thogonal matrix form a group G. The orbits of G are then the
ellipsoids Υρ =

{
y ∈ Rd : ‖y− θ0‖ = ρ

}
with radius ρ > 0.

We denote by F the family of all these ellipsoids.
The RDT problem of Eq. (1) is invariant under the ac-

tion of G in the sense that, given gR ∈ G, it remains un-
changed if gR(Θ+X) is considered instead of Θ+X . Indeed,
gR(Θ+X) = gR(Θ)+Φ−1RΦ(X), Φ−1RΦ(X) ∼ N(0,C)
and ‖gR(Θ) − θ0‖ = ‖Θ − θ0‖. This invariance cannot be
exploited directly by using the invariance principle [8] be-
cause the signal in Eq. (1) has unknown probability distri-
bution. Thresholding tests are G-invariant in that, given any
η > 0, Tη(gR(Θ + X)) = Tη(Θ + X) for every gR ∈ G.
However, this basic property does not say anything about any
invariance-based optimality property that thresholding tests
may verify. We are going to see that thresholding tests actu-
ally satisfy a very strong property that implies the optimality
of such tests within several invariance-based classes of tests.

3. THEORETICAL RESULTS

Below, a test is any measurable map of Rd into {0, 1}. Given
any θ ∈ Rd and any Y ∼ N(θ,C), the power function of test
T is hereafter defined as the map that assigns to θ the value

βθ(T) = P
[
T(Y ) = 1

]
. (3)

The size of a given test T is defined by:

α(T) = sup
θ∈Rd:‖θ−θ0‖6τ

βθ(T). (4)

Given γ ∈ (0, 1), T is said to have level (resp. size) γ if
α(T) 6 γ (resp. α(T) = γ). Throughout, Kγ denotes the

class of tests with level γ. To introduce our optimality crite-
rion for RDT, we need the following definition.

Definition 1 Given any Θ ∈ M(Ω,Rd) independent of X ∼
N(0,C), a given test T is said to have constant conditional
power function given Θ ∈ Υρ if, for any θ ∈ Υρ,

P
[
T(Θ +X) = 1

∣∣Θ ∈ Υρ

]
= βθ(T).

The next definition introduces our optimality criterion
for RDT. Henceforth, P‖Θ−θ0‖ stands for the probability
distribution of ‖Θ − θ0‖ and, given Θ ∈ M(Ω,Rd), a sup-
port of P‖Θ−θ0‖ is any borel subset D of [0,∞ ) such that
P‖Θ−θ0‖(D) = 1. Given Θ ∈ M(Ω,Rd), test T is hereafter
said to satisfy a given property for P‖Θ−θ0‖ – almost every
ρ > τ if there exists some support D of P‖Θ−θ0‖ such that
the property is verified for any ρ ∈ (τ,∞) ∩D.

Definition 2 Given τ > 0 and γ ∈ (0, 1), test T∗ is said to
have level γ and maximal constant conditional power (mccp)
over F for RDT — and we simply say that T∗ is γ-mccp — if:
[level] T∗ ∈ Kγ;
[mccp] Given any Θ ∈ M(Ω,Rd) and for P‖Θ−θ0‖ – al-
most every ρ > τ , T∗ has constant conditional power func-
tion given Θ ∈ Υρ and P

[
T∗(Θ + X) = 1

∣∣Θ ∈ Υρ

]
>

P
[
T(Θ + X) = 1

∣∣Θ ∈ Υρ

]
for any T ∈ Kγ with constant

conditional power function given Θ ∈ Υρ.

The main results of this section are then Theorems 1 and
2 below. In Theorem 1, ϑτ stands for the set of all Θ ∈
M(Ω,Rd) such that P

[
‖Θ − θ0‖ > τ

]
6= 0. Given any

test T, the power of T on ϑτ for RDT is the map that assigns,
to every given Θ ∈ ϑτ , the value

βΘ(T) = P
[
T(Θ +X) = 1

∣∣ ‖Θ− θ0‖ > τ
]
. (5)

A given test T∗ is hereafter said to be UMP (Uniformly Most
Powerful) with level (resp. size) γ for RDT among all tests
of some class C of tests if T∗ ∈ Kγ (resp. α(T) = γ) and
βΘ(T∗) > βΘ(T) for any Θ ∈ ϑτ and any T ∈ C.

Theorem 1 Given γ ∈ (0, 1) and τ > 0,

(i) Given any Θ ∈ ϑτ , any γ-mccp test is UMP for
RDT among all tests that have constant conditional
power function given Θ ∈ Υρ for P‖Θ−θ0‖ – almost
every ρ > τ .

(ii) Any γ-mccp test with constant power on every Υρ ∈ F
is UMP for RDT among all tests with G-invariant power
function;

(iii) Any γ-mccp and G-invariant test is UMP for RDT among
all G-invariant tests;

(iv) Any γ-mccp test is UMP with level γ for testing ‖θ −
θ0‖ 6 τ against ‖θ − θ0‖ > τ among all tests with
constant power function on every Υρ ∈ F with ρ > τ .
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In what follows, given ρ > 0, R(ρ, ·) stands for the cumu-
lative distribution function of the square root of any random
variable that follows the non-central χ2 distribution with d
degrees of freedom and non-central parameter ρ2.

Theorem 2 Given γ ∈ (0, 1) and τ > 0,

(i) Tλγ(τ) is γ-mccp with

P
[
Tλγ(τ)(Θ +X) = 1

∣∣Θ ∈ Υρ

]
= 1− R(ρ, λγ(τ))

for any given Θ ∈ M(Ω,Rd) and P‖Θ−θ0‖ – almost
every ρ > 0.

(ii) Given any Θ ∈ ϑτ , βΘ(Tλγ(τ)) > 1 − R(τ ′, λγ(τ))
where τ ′ ∈ [τ,∞) is the supremum of the set of all
those real values t > τ such that P

[
τ < ‖Θ − θ0‖ 6

t
]

= 0. Consequently, Tλγ(τ) is unbiased for RDT in
that βΘ(Tλγ(τ)) > γ for every Θ ∈ ϑτ .

(iii) Tλγ(τ) is UMP with size γ for RDT among all tests with
constant conditional power function given Θ ∈ Υρ for
P‖Θ−θ0‖ – almost every ρ > τ , among all tests with
G-invariant power function and among all G-invariant
tests.

(iv) For every ρ > τ , Tλγ(τ) has constant power function
βθ(Tλγ(τ)) = 1−R(ρ, λγ(τ)) on Υρ and βθ(Tλγ(τ)) >
βθ(T) for any θ ∈ Υρ and any test T ∈ Kγ with con-
stant power on Υρ.

The next proposition is a direct application of Theorem 2
and concerns the case of a deterministic unknown signal.

Proposition 1 Given γ ∈ (0, 1) and τ > 0,

(i) Tλγ(τ) is unbiased: βθ(Tλγ(τ)) > γ for all ρ > τ ;

(ii) For testing the null hypothesis ‖θ − θ0‖ 6 τ against
the alternative one ‖θ− θ0‖ > τ when the observation
is Y ∼ N(θ,C), Tλγ(τ) is UMP with size γ among
all tests with G-invariant power function, among all G-
invariant tests and among all tests that have constant
power function on every Υρ ∈ F with ρ > τ .

For testing the mean of a normal distribution, the reader
will easily verify that [1, Proposition III, p. 450] follows from
Proposition 1 and, thus, from Theorem 2, by considering the
particular case τ = 0.

4. APPLICATIONS

In this section, the detection of a non-null unknown signal via
its observation in additive Gaussian noise, a problem of inter-
est in many applications, is considered to illustrate the use of
the RDT in practice. It will be shown that, with model mis-
match, conventional approaches such as Neyman-Pearson’s
might fail, whereas the proposed RDT remains functioning in
any case. Furthermore, as a concrete real-world application,
the mechanical respiratory support monitoring is addressed.

4.1. Signal detection

Let Ξ be the random d-dimensional signal of interest with
unknown distribution and Ξ 6= 0 (a-s). Assume that Ξ is
observed in independent noiseX ∼ N(0,C) with known C >
0. The detection of Ξ is described as the binary hypothesis
testing where H0 is that only noise is present and H1 is that
the observation is the sum of signal and noise. Since Ξ 6= 0
(a-s), there exists a real value τ ′ > 0 such that ‖Ξ‖ > τ ′ (a-s).
Let Y be the observation, the problem can be summarized by{

H0 : Y ∼ N(0,C),
H1 : Y = Ξ +X,X ∼ N(0,C),P

[
‖Ξ‖ > τ ′

]
= 1.

(6)
By setting Θ = εΞ — where the random variable ε, val-

ued in {0, 1}, indicates the presence/absence of the target sig-
nal —, the problem of Eq. (6) is thus RDT with τ = 0 and
θ0 = 0. According to Theorem 2, the optimal γ-mccp test
provided by Theorem 2 is then Tλγ(0). The size and power
of this test are exactly the false alarm and detection probabili-
ties of the detection problem Eq. (6), respectively. We obtain
PFA

[
Tλγ(0)

]
= γ and PD

[
Tλγ(0)

]
> 1− R(τ ′, λγ(0)).

However, in practice, it may happen that H0 does not re-
duce to the presence of noise alone but that there might still
be some signal of no interest. This model mismatch might
cause standard likelihood approach to violate the Neyman-
Pearson’s constraint on the false-alarm probability, but intro-
duces no such a problem in the RDT framework. To illustrate
this aspect, the target signal is considered deterministic so that
the Neyman-Pearson likelihood test applies.

To begin with, let us consider the ideal model of Eq. (6)
with deterministic signal Ξ = ξ1 such that ‖ξ1‖ = τ ′. With
respect to this ideal model, the Neyman-Pearson test is de-
fined for every y ∈ Rd by TNP(y) = 1 if Λ = ξT

1 C−1y >
ξ and TNP(y) = 0 if Λ = ξT

1 C−1y 6 ξ, where thresh-
old ξ is calculated so that the ideal false alarm probability
is P

[
ξT1 C−1Y > ξ

]
= γ when Y ∼ N(0,C) in absence of

model mismatch. The handling of equality in the definition of
TNP does not matter for the absolute continuity of the proba-
bility distribution of the observation.

Assume now that in H0, some fluctuation induces the ob-
servation to randomly distort from zero, regardless whether
noise is present or not. The distribution of such distortion,
hereafter denoted by Ξ0, is unknown in practice. However,
‖Ξ0‖ is generally bounded (a-s) by some positive value τ .
The problem is actually:{

H0 : Y = Ξ0 +X
H1 : Y = ξ1 +X

with
{
X ∼ N(0,C),
‖Ξ0‖ ≤ τ (a-s), ‖ξ1‖ = τ ′.

(7)
If TNP is still applied, it might violate the constraint on the
false-alarm probability. Indeed, it can easily be shown that,
as long as the random variable ξT1 C−1Ξ0 is symmetrically
distributed, the aforementioned constraint is always violated,
i.e. PFA

[
TNP

]
> γ, for any γ < 0.5. On the contrary, with
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Fig. 1. Detection performance yielded by TNP and Tλγ(τ).
The reference represents the Neyman-Pearson’s constraint on
the false-alarm probability.

the same notation as before, by setting Θ = εξ1 + (1− ε)Ξ0,
the detection problem of Eq. (7) is RDT. The γ-mccp opti-
mality criterion is then relevant and, according to Theorem
2, is satisfied by Tλγ(τ). It then follows from Theorem 2 that
PFA

[
Tλγ(τ)

]
= P

[
‖Ξ0+X‖ > λγ(τ)

]
≤ 1−R(τ, λγ(τ)) =

γ. The constraint on the false-alarm probability is thus re-
spected by Tλγ(τ).

To illustrate these aspects, numerical simulations with
d = 2 and C = σ2Id were carried out. Ξ0 was randomly
generated with a normal distribution N(0, σ2

0Id) and τ was
set to τ = 2σ0, which means P

[
‖Ξ0‖ < τ

]
= 86.47%. Both

the Neyman-Pearson likelihood test (NP) TNP and the RDT
thresholding test Tλγ(τ) were employed with different values
of Signal-to-Noise Ratio (SNR) τ

′

σ (10dB, 15dB, 20dB). The
Signal-to-maximum-Distortion Ratio τ ′/τ was also set to a
similar value τ ′/τ = 5 (≈ 14dB). In other words, the ratio
σ0/σ is −10dB, −5dB, 0dB respectively, which seemingly
implies that the distortion caused by unexpected fluctuation
is of very small magnitude. Despite such small distortion,
TNP will fail. The detection results are reported in Fig. 1.
On the one hand, Fig. 1 confirms that, for any γ < 0.5, TNP
actually yields a false-alarm rate higher than expected. On
the other hand, although there is some loss in detection rate
due to the unavoidable trade-off between the false-alarm and
the detection probability, the detection in the RDT framework
guarantees a false-alarm rate lower than the specified level γ.

4.2. Mechanical respiratory support monitoring

Mechanical ventilation is routinely used in emergency wards,
operation room or intensive care unit. It is also use at home or
in nursing/rehabitation institution. Unfortunately, imperfect
interaction between patient and ventilator is very common.

AutoPEEP (Auto-Positve End Expiratory Pressure) and IEE
(Ineffective Effort during Expiration) are among the most fre-
quent abnormalities during mechanical respiratory support.
On the basis of the respiratory curves (flow, pressure, vol-
ume) available on recent ventilators, the automatic detection
of such abnormalities can be carried out.

On the one hand, AutoPEEP can be regarded as the non
return to zero of the flow signal at the end of expiratory phase
to the null value. Let ft be the clean flow signal and tk be
the end expiration instant of the considered breath. Given
some tolerance τ , the detection of AutoPEEP is then testing
|ftk | 6 τ against |ftk | > τ based on its observation in noise.
The problem is RDT and the optimal test is then Tλγ(τ) with
d = 1 and level γ specified by clinician. The assessment on
clinical data has shown that the proposed test could provide
an good detection of AutoPEEP with an Accuracy of 93% and
a recall (sensitivity) of 90% [9].

On the other hand, the presence of IEE introduces a wave-
form distortion during the expiratory portion of the flow sig-
nal. Let fk be the clean expiratory flow signal samples of
the considered k-th breath and f0 be the waveform reference
which can be estimated from normal expirations. The de-
tection of IEE then resorts to testing ‖fk − f0‖ 6 τ against
‖fk − f0‖ > τ based on observation Yk = fk + Xk in gaus-
sian noise Xk. The optimal test is also given in the RDT
framework by Tλγ(τ) with d is the number of samples in ex-
piratory portion of a breath. The tolerance τ and level γ are
also given by clinician. The experiment on synthetic data has
shown that such detection could yield a detection rate of 90%
for γ = 0.01.

5. CONCLUSION AND PERSPECTIVES

This paper has introduced the RDT problem with applica-
tions in signal detection and mechanical respiratory sup-
port monitoring. The mccp property has been introduced as
invariance-based optimality criteria for RDT. To a certain ex-
tent, RDT could be considered as a semi-parametric approach
since, on the one hand, they guarantee robustness against sig-
nal distribution variations and, on the other hand, yield statis-
tical optimality in a sense similar to Neyman-Pearson’s. The
mere information needed to perform RDT concerns solely
the noise covariance matrix, which can often be estimated in
practice. No training data is needed, which is relevant for
many applications where collecting and annotating a suffi-
ciently large and representative dataset concerning the signal
is a laborious task.

In a future work, theoretical extensions could concern the
combination of RDT with those of [1]. For instance, since
distortion testing enables to overcome the lack of robustness
of likelihood ratio tests, elaborating on RDT problems involv-
ing nuisance parameters and large sample sizes could be rele-
vant. Other applications such as tracking, anti-collision radar,
structural health monitoring could also be investigated.

6350



6. REFERENCES

[1] A. Wald, “Tests of statistical hypotheses concerning sev-
eral parameters when the number of observations is
large,” Transactions of the American Mathematical So-
ciety, vol. 49, no. 3, pp. 426–482, 1943.

[2] C. Rao, “Large sample tests of statistical hypotheses con-
cerning several parameters with applications to problems
of estimation,” Proceedings of the Cambridge Philosoph-
ical Society, vol. II, pp. 50–57, 1948.

[3] J. Neyman and E. Pearson, “On the use and interpretation
of certain test criteria for purpose of statistical inference,”
Biometrika, vol. 20, pp. 175–240, mar. 1928.

[4] H. V. Poor, An Introduction to Signal Detection and Esti-
mation, 2nd ed. Springer-Verlag, New York, 1994.

[5] P. Mahalanobis, “On the generalised distance in statis-
tics,” Proceedings of the National Institute of Sciences of
India, vol. 2, no. 1, pp. 49–55, feb. 1936.

[6] S. M. A. Sbai, A. Aissa-El-Bey, and D. Pastor, “Contribu-
tion of Statistical Tests to Sparseness-Based Blind Source
Separation,” EURASIP journal on applied signal process-
ing, jul. 2012.

[7] D. Pastor and Q.-T. Nguyen, “Testing the mahalanobis
distance between a random signal with unknown distri-
bution and a known deterministic model in additive and
independent standard gaussian noise: the random distor-
tion testing problem, RR-2012 04-SC,” Institut Télécom,
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