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ABSTRACT

In this work, we study non-parametric hypothesis testing problem
with density function constraints. The empirical likelihood ratio test
has been widely used in testing problems with moment (in)equality
constraints. However, some detection problems cannot be described
using moment (in)equalities. We propose a density function con-
straint along with an empirical likelihood ratio test. This detector
is applicable to a wide variety of robust parametric/non-parametric
detection problems. Since the density function constraints provide
a more exact description of the null hypothesis, the test outperform-
s many other alternatives such as the empirical likelihood ratio test
with moment constraints and robust Kolmogorov-Smirnov test, es-
pecially when the alternative hypothesis has a special structure.

Index Terms— empirical likelihood, universal hypothesis test-
ing, goodness-of-fit test, robust detection.

1. INTRODUCTION

The empirical likelihood ratio test was first studied by A. Owen [1–
3] to test the validity of moment equalities. It is widely used as a tool
for non-parametric detection problems in economics. However, the
empirical likelihood ratio test with moment constraints (ELRM) is
not powerful enough for some problems which test not only the mo-
ment constraints but also many other parameters. This paper studies
one such problem which tests density function constraints using an
empirical likelihood ratio test (ELRDF). Namely, we consider the
problem of testing whether the observations are generated by a den-
sity function which is point-wisely bounded. This problem covers a
wide range of applications. For example, the robust detection prob-
lem started by Huber in [4], where the true density Q is buried in an
ε-contamination model Q = (1 − ε)P + εH , with P the nominal
density andH an arbitrary density function, can be treated as a varia-
tion of the function density constraint. Huber’s test features a clipped
version of the likelihood ratio test between the nominal densities that
delivers performance which minimizes the worst-case probability of
false alarm and miss. In fact, the density function constraint can be
applied whenever robustness is needed.

Besides Huber’s clipped test, there are other alternative tests that
can be applied to test density function constraints. One approach
is to use the empirical likelihood ratio test with moment inequali-
ties [5, 6], which is one type of moment constraints. This technique
also suffers from the problem of insufficient description using mo-
ment inequalities. For example, when the unknown hypothesis con-
tains the null hypothesis (nested hypotheses), ELRM performs only
slightly better than flipping a fair coin. Another alternative is the ro-
bust version of Kolmogorov-Smirnov (KS) test [7–9]. It is difficult
to analytically compare the performance of ELRDF and robust KS
test. Numerical examples show that the ELRDF outperforms robust

KS test when hypotheses are nested and in low SNR regime. In this
work, we also discuss the asymptotic optimality of the ELRDF in
the framework of [5, 10–12].

The rest of this paper is organized as follows. Section 2 for-
mulates the ELRDF test and discusses its asymptotic optimality.
Section 3 discusses two alternative tests, the ELRM and the robust
Kolmogorov-Smirnov test, and compare their performance with EL-
RDF. Section 4 presents an experimental study of noise uncertainty
and tests’ performances. Section 5 concludes the paper.

2. DENSITY FUNCTION CONSTRAINED DETECTION
PROBLEM

2.1. Problem formulation

Consider a sequence of observations X = {Xi : i = 1, . . . , n,Xi ∈
X} which are i.i.d. generated by probability density f , with cumu-
lative density function (CDF) F . X ⊆ R denotes the sample space.
Additionally, the empirical CDF with observations X is denoted as
Fe:

Fe(x,X) =
1

n

n∑
i=1

1{Xi≤x},

where 1{·} is the indicator function. Denote Fe = {Fe(x,X) :
X ∈ Xn} as the set of all empirical density functions on the n-
dimensional samples space Xn. In the context where X is provided,
we usually write Fe(x,X) simply as Fe(x). Given X, the problem
whether F belongs to a certain set of probability densities F is of
interest. This is a universal hypothesis testing problem:

H0 : F ∈ F ,
H1 : F /∈ F . (1)

We are particularly interested in the form of F that is characterized
by boundaries of certain CDFs, specifically:

F = {G : Fl(x) ≤ G(x) ≤ Fu(x)}. (2)

2.2. Solution

Given X, let F̂ be absolutely continuous with respect to Fe. (F̂ �
Fe) Let l(Fe) =

n∏
i=1

(
Fe(Xi) − Fe(Xi−)

)
= n−n and l(F̂ ) =

n∏
i=1

wi, where wi = F̂ (Xi) − F̂ (Xi−). The empirical likelihood

ratio is defined as:

R(F̂ , Fe) =
l(F̂ )

l(Fe)
. (3)
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Naturally, wi ≥ 0,
∑n

i=1 wi = 1. Then we can rewrite R(F̂ , Fe) as
a function of ~w = [w1, w2, . . . , wn]T :

R(~w, Fe) =

n∏
i=1

nwi.

In the sequel, we use R(F̂ , Fe) and R(~w, Fe) interchangeably de-
pending on the context. It is known that l(F̂ ) ≤ l(Fe) for all choices
of ~w in the probability simplex [3, p. 8]. When wi = 1

n
for all i,

l(F̂ ) = l(Fe), then R(F̂ , Fe) ≤ 1. As a first step towards the de-
tection problem, we would like to maximize the empirical likelihood
ratioR(F̂ , Fe) with respect to ~w when F̂ satisfies the boundary con-
ditions:

max
~w

{
R(~w, Fe) :wi ≥ 0,

n∑
i=1

wi = 1,

Fl(Xi) ≤ F̂ (Xi) ≤ Fu(Xi)
}
.

We shall assume without loss of generality that X1 < X2 < . . . <
Xn. Construct a (n− 1)× n matrix:

A =


1 0 0 . . . 0 0
1 1 0 . . . 0 0
1 1 1 . . . 0 0
...

. . .
. . .

. . .
...

...
1 . . . 1 1 1 0

 ,

and let ~Fl = (Fl(X1), Fl(X2), . . . , Fl(Xn−1))T , ~Fu = (Fu(X1),
Fu(X2), . . . , Fu(Xn−1))T . The last constraint is conveniently
written as:

~Fl ≤ A~w ≤ ~Fu.

One should notice that A does not contain a row of all ones since
the constraint

∑n
i=1 wi = 1 will certainly contradict the assertion

Fl(Xn) ≤
∑n

i=1 wi ≤ Fu(Xn). Indeed, one can also drop the
constraint

∑n
i=1 wi = 1 and add an all-one row to the bottom of A.

We shall see that at this point, it would not make a dramatic differ-
ence to favor one alternative over the other. We formally introduce
the empirical likelihood with density function constraints as follows:

max
~w

{
R(~w, Fe) :wi ≥ 0,

n∑
i=1

wi = 1,

~Fl ≤ A~w ≤ ~Fu

}
. (4)

This is a problem with a concave objective function (after taking
log operation) and linear constraints. The solution to it is readily
available. Let ~w∗ be the maximizer and corresponding CDF as F ∗.
We build the empirical likelihood ratio test with density function
constraints on the value of R(~w∗, Fe):

R(~w∗, Fe)
H0

≷
H1

ηn, (5)

where 0 ≤ ηn ≤ 1. The test is to say that when the estimated
likelihood is close enough to the empirical density, we declare that
H0 is true; and declareH1 true otherwise.

2.3. Asymptotic optimality

The detector (5) is a partition of Fe, i.e., Fe = Ω0 ∪ Ωc
0, where Ω0

is explicitly defined as:

Ω0 = {Fe : R(F ∗, Fe) ≥ ηn}.

Ω0 is also referred to as the confidence set. The empirical likelihood
ratio test can be interpreted from an information theoretic perspec-
tive. Given the observations X, notice that:

inf
F∈F

D(Fe||F ) = min
~w

{ n∑
i=1

1

n
log

1

nwi
:

wi ≥ 0,

n∑
i=1

wi = 1, ~Fl ≤ A~w ≤ ~Fu

}
= − 1

n
logR(F ∗, Fe),

where D(·||·) is the Kullback-Leibler divergence. Then we could
express Ω0 using inf

F∈F
D(Fe||F ):

Ω0 = {Fe : e
−n inf

F∈F
D(Fe||F )

≥ ηn}. (6)

Let Ω̂0, Ω̂c
0 be an arbitrary partition of Fe. The test declaresH0

true if Fe ∈ Ω̂0. The error performance of the test is characterized
by the worst-case probability of false alarm and the probability of
miss:

PF = sup
F∈F

F (Fe /∈ Ω̂0),

PM = sup
F /∈F

F (Fe ∈ Ω̂0).

In the asymptotic regime, it is customary to study the exponential
decay rates of PF and PM as the number of samples tends to infinity.
Their error exponents are expressed as:

eF (Ω̂0) = lim inf
n→∞

− 1

n
log sup

F∈F
F (Fe /∈ Ω̂0)

= lim inf
n→∞

inf
F∈F
− 1

n
logF (Fe /∈ Ω̂0),

and

eM (Ω̂0) = lim inf
n→∞

− 1

n
log sup

F /∈F
F (Fe ∈ Ω̂0)

= lim inf
n→∞

inf
F /∈F
− 1

n
logF (Fe ∈ Ω̂0).

The test Ω̂0 is asymptotically optimal if it solves the generalized
Neyman-Pearson problem:

sup
Ω
eM

s.t. : eF ≥ γ. (7)

Invoking the Sanov’s theorem, the following relationship is obvious:

eF (Ω̂0) = lim inf
n→∞

inf
F∈F
− 1

n
logF (Fe /∈ Ω̂0)

= inf
Fe /∈Ω̂0

inf
F∈F

D(Fe||F ).
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Replacing Ω̂0 by Ω0 in (6) yields:

eF (Ω0) = inf
Fe /∈Ω0

inf
F∈F

D(Fe||F )

= − 1

n
log ηn.

Since the test Ω0 is the conjectured optimal test, it is desired that
all tests be compared on a fair ground. Therefore in the generalized
Neyman-Pearson problem (7), we let γ = − 1

n
log ηn.

The asymptotic optimality of the test (6) can be argued in a sim-
ilar way as in [5]. To rigorously establish the asymptotic optimality
of the test Ω0, one needs to follow several steps. Firstly, one shall
notice that the test is asymptotically consistent. Namely, when the
null hypothesis is true, P{Fe ∈ Ω0}

n→∞−→ 1. This is true according
to Glivenko-Cantelli theorem [13, 14]: the empirical distribution u-
niformly converges to the true distribution. Secondly, one shall argue
that for an alternative test Ω̂0 that satisfies:

eF (Ω̂0) ≥ γ + δ,

∀δ > 0, it follows that

eM (Ω0) ≥ eM (Ω̂0) + κ(δ),

∀κ(δ) > 0. For detailed techniques, readers are referred to [5, 10].

3. OTHER COMPETITIVE DETECTORS

The problem (1) is of wide interest as a non-parametric detection
problem. Several detectors proposed in the past could also be con-
sidered as possible solutions. In this section, the empirical likelihood
ratio test with moment constraints and the robust KS test will be dis-
cussed and compared with ELRDF.

3.1. Empirical likelihood ratio test with moment constraints

The empirical likelihood ratio test with moment constraints (ELRM)
is closely related to our proposed detector. The difference is that
the density function constraints are replaced by constraints on the
moments such as the mean, variance, etc. For example, suppose l =∫
xdFl(x) and u =

∫
xdFu(x). One can consider the following

alternative for the original optimization problem (4):

max
~w

{ n∏
i=1

nwi :wi ≥ 0,

n∑
i=1

wi = 1,

u ≤
n∑

i=1

wiXi ≤ l
}
. (8)

If the detection problem is to decide whether the underlying proba-
bility has a mean that falls onto the interval [u, l], the optimal solu-
tion to (8) also enjoys the asymptotic optimality in the generalized
Neyman-Pearson sense. Nevertheless, the moment constraint alone
cannot provide an exact description of the set F in (2). Although in
theory, a density function is determined when all of its moments are
determined, it is impractical to have a long list of moment condition-
s.

Another case in which the ELRM would fail is when the hy-
potheses are nested. For example, in a communication system where
the receiver performs uncorrelated signal detection. The hypothe-
ses that a signal is transmitted and that no signal present are nested.
Consider a numerical example. The null distribution is a mixture of
normal distributionN (0, 1) with unknown means uniformly located
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Fig. 1: ROC ELRDF vs ELRM for nested hypotheses.

in the interval [−0.1, 0.1]. The alternative distribution is also a mix-
ture of normal distribution with unknown means located in [−1, 1].
Sample size is 20. The receiver operational characteristic (ROC)
curve shown in Figure 1 indicates that ELRDF outperforms ELRM.

3.2. Robust Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test is a popular non-parametric test. It-
s robust version is directly applicable to our problem with density
function constraint F in (2). The test statistic of the robust KS test
has the following form:

Dn = inf
F∈F

sup
x
|Fe(x)− F (x)|. (9)

The test compares the statistic with a constant:

√
nDn

H0

≷
H1

γ. (10)

It is difficult to analytically compare the performance of ELRDF and
robust KS test. We consider an example where the null hypothesis
is a mixture of normal distributions with unknown mean located in
[−2, 2]. The alternative hypothesis is a normal distribution located at
2.02 and 2.2. When the alternative hypothesis is located at 2.2, the
robust KS test is slightly better for small probability of false alarm.
When the alternative hypothesis is located at 2.02, ELRDF outper-
forms the robust KS test. We draw a conclusion without rigorous
proof that the ELRDF performs better than robust KS test in low S-
NR regime. It could be interpreted heuristically as follows. When
the alternative hypothesis is very close to the null hypothesis, the
robust KS test would fail since it is too close to the boundaries Fl

and Fu. But the ELRDF computes the “distance” between the em-
pirical density and the estimated density, which is located inside the
boundaries of Fl and Fu. Therefore, ELRDF still can discriminate
the hypotheses with reasonable probability.

4. EXPERIMENTAL RESULT

4.1. Uncertainty of noise distribution

In this section, we examine the uncertainty of noise distribution
where the noise samples are obtained from a software-defined radio
device. When a large amount of noise samples are examined, they
appear to follow the same Gaussian distribution. However, when a
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Table 1: Percentage of test failures of direct and mean shifted K-S test.

Data sets 1 2 3 4 5 6
Direct K-S test 0.0255 0.0252 0.0270 0.0261 0.0260 0.0286

Mean shifted K-S test 3.5217× 10−4 1.9234× 10−4 0 0 1.8871× 10−4 1.7986× 10−4
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Fig. 2: ROC ELRDF vs robust KS test.

small portion of the samples are examined, they appear to follow
another Gaussian distribution. This observation is supported by
results of Kolmogorov-Smirnov test [8, 9]. Specifically, we study
six data sets with 2 million samples each, which is used to generate
an estimation of Gaussian distribution N (m,σ2). For every 500
samples, the KS test of significance level 0.01 with critical value
1.63√
500

is performed to test whether the 500 samples are generated
by N (m,σ2) or not. If the samples are generated by the same
distribution F , this percentage of failed tests should not exceed the
significance level 0.01. However, from the second row in Table 1,
we notice that the percentages of the test failures exceeds the sig-
nificance level by a noticeable margin. This result indicates that the
noise samples are not generated by the same Gaussian distribution.
To compare, a batch of mean shifted K-S tests are conducted, where
in each test, the meanm of the null hypothesis is shifted to the mean
of each 500-sample group. We notice that the failure percentages
drop significantly for all the data sets (third row in Table 1). This
indicates that there exist shifts in the mean for the Gaussian distribu-
tions while generating the samples. The empirical uncertainty region
of noise sample distribution is plot in Figure 3 for finite sample size
of 100.

4.2. Example: testing a constant

We consider an example where the alternative distribution has a con-
stant boost of the noise and the empirical uncertainty region studied
in previous subsection. However, this information is not available
and we consider a universal test. As the closest alternative, the per-
formance of the robust KS test is studied as a comparison. Figure
4 plots the ROC curves of the two tests for sample size 10 and con-
stant level at 3 and 5. The plots indicates that ELRDF outperforms
the robust KS test.
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Fig. 3: Uncertainty region of experimental noise samples.
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Fig. 4: Performance comparison of detecting a constant: ELRDF vs
robust KS test.

5. CONCLUSION

This work proposes a novel empirical likelihood ratio test with den-
sity function constraints (ELRDF). This test is applicable to many
applications in robust parametric/non-parametric detection problem-
s. By providing an exact description of uncertainty using density
function constraints, this test delivers better performance compared
to empirical likelihood ratio test with moment constraints (ELRM).
A detection problem with nested hypotheses is provided as an illus-
tration. More importantly, the paper shows with a numerical and
an experimental examples where the alternative hypothesis is a con-
stant boost of the noise that ELRDF outperforms the robust KS test
especially at the low SNR regime. It also discusses the asymptotic
optimality of this test. The following step of this paper is to estab-
lish a rigorous proof of the asymptotic optimality and the asymptotic
distribution of test statistics.
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