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Abstract—This paper investigates data reduction strategies
from signal processing perspective for centralized detection with
distributed sensors. We consider a deterministic source observed
by a network of sensors and develop an analytical strategy for
ranking sensor transmissions based on their test statistics. The
benefit of the proposed strategy is that in certain scenarios, the
decision to transmit or not to transmit to the fusion center can
be made at the sensor level, resulting in significant savings in
transmission costs. We derive a theoretical bound on the number
of sensor transmissions saved. Our results complement existing
results in the literature. We simulate the proposed strategy and
demonstrate its benefits over the unconstrained energy approach.

Index Terms—wireless sensor networks, distributed target
detection, statistical ranking, sequential probability ratio test

I. INTRODUCTION

IN a typical wireless sensor network (WSN) application
such as target detection, several sensors are deployed in

the field. These sensors observe events of interest and report
them to a fusion center (FC) which may be located far from the
observation area. Information processing is a major challenge
to deal with in WSN applications for many reasons. Several
strategies aimed at reducing communication and energy costs
are available in the literature. For example, a node selection
strategy based on relative geometry for localization has been
proposed in [1]. Similarly, in [2], only the sensor whose
measurement could provide the maximum information utility
is activated at each snapshot for both system stability and
tracking accuracy. There are also several low-power and sleep
strategies for reducing energy costs associated with sensing
and communication in WSN [3]–[6].

Our focus, in this paper, is solely on signal processing
perspective to reduce the communication costs in WSN.
Specifically, we look at measures that a sensor can make use of
to assess the utility or value of the observations that it acquires.
The benefit of such utility measures, namely test statistics
here, is that in certain cases, the decision to transmit or not to
transmit can be made by the sensor itself. In addition, sensors
can utilize such utility measures to schedule transmission of
their observations.

We begin with a deterministic source model in which a
WSN consists of a number of sensors observing a phenomenon
of interest and communicating their observations to a FC.
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A. Major Contributions

Our research work deals with statistical ranking of sensor
test statistics for signal detection applications in WSN under
the Neyman-Pearson (NP) paradigm. We consider a determin-
istic source observed by a network of sensors and develop
a strategy for ranking the transmissions based on their test
statistics. The transmitted test statistics approximate the signal-
to-noise ratios (SNRs) and thus could be utilized for further
analysis of the network characteristics. The proposed strategy
is based on the ordered transmissions scheme presented in [7]
but makes use of different statistic. We derive an upper bound
on the number of sensors saved. Our result complements the
lower bound derived in [7]. The main benefit of the ordered
transmissions scheme is that the decision to transmit or not
to transmit can be made at the sensor level which results in
significant savings in transmission costs. We demonstrate these
advantages through simulations and theoretical analysis.

B. Organization

Section II provides a summary of related work in the area of
signal processing based data reduction strategies. Section III
describes the proposed statistical ranking strategy. Section IV
assesses the performance of the proposed scheme. This section
includes an illustrative example to quantify the benefits of the
proposed scheme. Section V concludes the paper.

II. RELATED WORK

In the following discussion, we review recent literature and
discuss data reduction strategies that are closely related to
our research. For example, a scheme for distributed detection
based on a “censoring” or “send/no-send” idea is proposed in
[8]. The sensors are assumed to “censor” their observations so
that each sensor sends to the FC only “informative” observa-
tions, and leaves those deemed “uninformative” untransmitted.
The problem of interest, therefore, is reduced to an N sensor
binary hypothesis testing problem, where the sensors are
trying to decide between the null (H0) and alternate (H1)
hypotheses. A sensor will transmit its observation if and only
if its likelihood ratio is very large or very small. The problem
of energy efficient signal detection in considered in [7]. The
authors proposed an ordered transmission scheme in which
only sensors with the most informative observations transmit.
In their approach, the i th sensor will transmit after a time
proportional to the inverse of its likelihood ratio (1/ |ln(Li)|)
and once enough evidence is accumulated to decide for one
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hypothesis or the other, the process is stopped in order to save
valuable transmission energy. This assume however knowledge
of the a priori probabilities of the respective hypotheses, which
is not possible in applications such as sonar and radar. The
ordered transmission framework proposed in [7] has since been
investigated by several researchers [9]–[12].

One challenge in data reduction strategies is to find the
subset of significant observations before they are actually
transmitted to the FC. It is possible to achieve this in certain
scenarios depending on the observation model. For example,
when the sensor observations are uncorrelated, each sensor can
decide the value of its observations independently. In fact, in
conventional cluster routing protocols, it is not necessary to
involve all the sensors due to the redundancy characteristics
of the information that they acquire. These observations led
to the development of a data reduction strategy in which only
sensors with high local SNRs are selected to transmit their
observations [13].

III. CENTRALIZED DETECTION BASED ON STATISTICAL
RANKING

Consider a WSN deployed for a target detection application.
It is assumed that the observed source signal is deterministic
and that the observations are corrupted by an additive white
Gaussian noise (AWGN). This involves at the local level,
transmission of the test statistics to a FC that will decide
whether or not the target is present. The goal is to develop
a data reduction strategy based on statistical ranking of the
test statistics, to allow only informative sensors to transmit
to the FC. The detection problem at the FC thus consists of
deciding between the two statistical hypotheses H1 (target is
present) and H0 (target absent):

H0 : yi = wi, 1 ≤ i ≤M

H1 : yi = A+ wi, 1 ≤ i ≤M.

Here, A > 0 is the deterministic signal that is assumed
known and corrupted by a zero-mean AWGN wi with known
variance σ2

i . M represents the total number of sensors in the
network. It is assumed that there is no prior knowledge about
the probabilities of occurrence of H1 and H0.

The NP detector decides H1 if the likelihood ratio L(y)
exceeds a threshold γ as follows

L(y) =
p(y;H1)
p(y;H0)

> γ, (1)

where y = [y1, y2, ..., yM ]T .
Starting from (1), and after some simplifications which the

interested reader can find in [14], the FC decides H1 if

T (y) =
M∑
i=1

Ayi
σ2
i

> γ′. (2)

In (2),

γ′ =

√√√√ M∑
i=1

A2

σ2
i

Q−1 (PFA) , (3)

with PFA the probability of false alarm, Q(x) the probability
that a normalized Gaussian random variable will be larger than
x and Q−1(·) is its inverse.

A. Local Measurements

Each sensor may make a set of measurements xi =
[xi[0], xi[1], ..., xi[N − 1]]T , where N is the total number of
observations. After all the N measurements acquired, each
sensor computes its test statistic Ti = Ayi

σ2
i

, where yi =
1
N

∑N−1
n=0 xi[n], and sends it to the FC for global decision.

B. Global Decision

The goal of the FC is to distinguish between H1 and H0

with k < M sensor transmissions. For that, we perform a
sequential test with ranked sensor test statistics. According
to the ordered transmissions scheme of [7], we have |T1| ≥
|T2| ≥ ... ≥ |TM |. Hence, the larger the magnitude of the
individual test statistic Ti, the greater the contribution of sensor
i to the global test statistic T (y). Assuming the network is
synchronized, the sensors compute their test statistic at the
same time but only send the result after a delay Di = C/ |Ti|,
where C is a known normalized constant. As a result, the
sensors with large test statistic values will transmit first.

When the ith test statistic Ti is received at the FC, there are
M − i sensors that have not transmitted yet. The cumulative
sum Si of the received test statistics and Ri of the remaining
M − i test statistics can be expressed as shown in (4) and (5)
respectively

Si =
i∑

j=1

Tj = Si−1 + Ti, (4)

Ri =
M∑

j=i+1

Tj , (5)

with Tj = Ayj

σ2
j

, i = 1, 2, ..., M and S0 = 0.

In an unconstrained energy scenario, the FC collects all
the individual test statistics, computes T (y) and compares
the result to γ′ in order to make a decision. In this work,
we would like to make this decision with the least number
of sensor transmissions in order to save the limited resources
that the network depends on. Based on the ordering scheme
employed, T (y) can be bounded using

Si−(M−i) |Ti| ≤ T (y) = Si+Ri ≤ Si+(M−i) |Ti| . (6)

For the FC to declare H1 or H0 after collecting all the test
statistics, T (y) must be greater or less than γ′ respectively.
Hence, at any instant during the collection of the test statistics,
if Si − (M − i) |Ti| ≥ γ′, the FC can declare H1 and halt
further transmissions. Similarly, if Si +(M − i) |Ti| < γ′, the
FC declares H0 and halts further transmissions.

The stopping rule for determining both H0 and H1 can then
be summarized as follows:
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Pr {k} = Pr {Sk ≥ tu(k), Sk−1 < tu(k − 1), · · · , S1 < tu(1)} (7)

Pr {k} = Pr {Sk ≥ tu(k)} ∗ Pr {Sk−1 < tu(k − 1)} ∗ · · · ∗ Pr {S1 < tu(1)} (8)

• Si ≥ γ′+ (M − i) |Ti| = tu(i): accept H1 and terminate
the current test;

• Si < γ′ − (M − i) |Ti| = tl(i): accept H0 and terminate
the current test.

The overall approach to statistically ranking sensors obser-
vations can be summarized in the following steps:

1) Each sensor collects a set of measurements and estimates
yi.

2) Each sensor computes its test statistic Ti = Ayi

σ2
i

.
3) Each sensor then computes Di = C/ |Ti|, where C is

a normalized constant pre-computed and communicated
to all sensors.

4) After a time period equal to Di , sensor i will transmit
Ti to the FC. As a result, the sensors with the highest
test statistic will transmit first.

5) Upon receiving the test statistics, the FC computes the
cumulative sum Si and uses the stopping criteria above
described to make a decision regarding the presence or
absence of the target. Once one of the stopping criteria
is satisfied, it broadcasts a message to halt further
transmissions.

In the next section, we illustrate the benefits of the proposed
strategy. We conducted different experiments and present the
obtained results.

IV. PERFORMANCE EVALUATION

The proposed strategy will stop transmissions once one of
the stopping criteria is satisfied. Under H1, the probability that
only k < M sensor transmissions is required for detection is
defined as shown in (7), which is then simplified to (8).

This, however, requires the knowledge of

Pr {Si ≥ tu(i)} =
∫ ∞
tu(i)

f (Si) dSi

and

Pr {Si < tl(i)} =
∫ tl(i)

−∞
f (Si) dSi, (9)

where f (Si) denotes the probability density function (PDF)
associated with the sum of i dependent test statistics

∑i
j=1 Tj .

To determine this PDF, we need to determine f(T1, T2, ..., Ti)
first, which can be written as

f(T1, ..., Ti) = f(T1) ∗ f(T2|T1) ∗ · · · ∗ f(Ti|Ti−1), (10)

due to the ordering of the test statistics.
There is no closed form to (10) and thus to f(Si). In

fact, such closed form expressions require the distribution of

a linear combination of normal order statistics with different
variances, which to the best of our knowledge does not have
a closed form. However, we know that a target is present in
the network when

k∑
i=1

Ti ≥

√√√√ M∑
i=1

A2

σ2
i

Q−1 (PFA) + (M − k) |Tk| (11)

or

k∑
i=1

|Ti|+ k |Tk| −M |Tk| ≥

√√√√ M∑
i=1

A2

σ2
i

Q−1 (PFA) . (12)

Let us refer to the largest and smallest test statistics after
ranking as Tmax and Tmin respectively. Eq.(12) can be rewrit-
ten as

2k |Tmax| −M |Tmin| ≥

√√√√ M∑
i=1

A2

σ2
i

Q−1 (PFA) , (13)

which is then simplified to

k ≥

√∑M
i=1

A2

σ2
i
Q−1 (PFA) +M |Tmin|

2 |Tmax|
. (14)

Assuming Ns represents the number of sensor transmissions
saved and using the fact that k = M − Ns, (14) is rewritten
as

Ns ≤M −

√∑M
i=1

A2

σ2
i
Q−1 (PFA) +M |Tmin|

2 |Tmax|
. (15)

The bound on the number of sensor transmissions saved
which depends on several factors can be obtained in a similar
fashion under H0. Since Tmax and Tmin are two random
variables, this bound is also a random variable. Deriving the
expected value for this bound requires the knowledge of the
distribution of these random variables, for which closed form
expressions are not known. Hence, we present our findings
through several simulations.

We plot this upper bound as a function of M for different
values of the signal level A and for PFA = 0.01 in Fig. 1. The
sensor observations are assumed to be corrupted by AWGN
having the same mean (0) but different variances (randomly
selected between 0.4 and 1).

Fig. 1 suggests that the number of sensor transmissions
saved increases as the signal level increases. For example,
when A = 0.5, the bound is 60 and when A = 1, the bound
is slightly greater than 70. For higher values of A (A ≥ 5),
the bound asymptotically reaches 90.
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Fig. 1. Upper bound on the average number of sensor transmissions saved
(Ns) over the unconstrained energy approach.

We also observe that varying PFA does not have significant
effect on the value of the bound.

We demonstrate the benefits of the proposed strategy
through further simulations. We simulated a network of 20
nodes and a FC. The observed deterministic signal A is
assumed to be the same for all the sensors, and has a value of
1. Fig. 2 shows the simulation results under H1 for different
desired PFA at the FC. The results show that the proposed
ranking strategy requires on average approximately 11, 11
and 10 sensor transmissions for PFA = 0.01, 0.02, 0.05
in order to make a decision. This can be observed when
Pr {Si ≥ tu(i)} = 0.5.
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Fig. 2. Detection performance at the FC under hypothesis H1.

Fig. 3 shows the simulation results under H0 for different
values of PFA at the FC. Here, the unconstrained energy
approach requires all 20 sensor transmissions in order to
make a decision, whereas the proposed strategy can make this
decision with less sensor transmissions since the upper bound
of the global test statistic is predictable at each instant due
to ranking. Thus, once the predicted global test statistic after

the ith transmission is less than tl(i), the FC can declare the
target absent. For example, for PFA = 0.01, 0.02, 0.05, the
FC can save on average approximately 12, 11, and 10 sen-
sor transmissions respectively, over the unconstrained energy
approach. This can be observed when Pr {Si < tl(i)} = 0.5.

The results of Fig. 1 were obtained after 104 Monte Carlo
realizations and those of Fig. 2 and Fig. 3 were obtained after
106 realizations.
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Fig. 3. Detection performance at the FC under hypothesis H0.

V. CONCLUSIONS

This paper proposed a data reduction strategy based on
statistical ranking of sensor test statistics in a centralized
detection application. Based on the proposed protocol in which
sensor transmissions are ordered according to the magnitude
of their test statistics, each sensor can determine if and when
to transmit its information to the FC. As a result, sensors with
the highest test statistics transmit first while the ones with
small test statistics are blocked from transmission by the FC.
We demonstrated that the proposed strategy saves significant
transmission costs and thus preserves limited resources that the
network operates on. It has been shown through simulations
that the proposed ranking strategy, under the considered sce-
narios, can save more than 50% of sensor transmissions when
compared to the unconstrained energy approach. Theoretically,
we showed that finding a tight bound on the number of
required sensors is subject to determining the distribution of
a linear combination of normal order statistics with different
variances.
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