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ABSTRACT

The principal difficultly in tracking in an urban terrain is the pres-
ence of multipaths. However by using proper modelling and signal
processing techniques these multipaths can be used favourably. In
this paper we consider a more robust model of the urban terrain by
not assuming exact wall locations but rather allowing for small devi-
ations. This is achieved by introducing a random phase shift to the
radar equation. A MCMC based particle filter which uses an adap-
tive kernel to improve the mobility of the Markov Chain is proposed
with supporting simulation results.

Index Terms— MCMC, particle filter, multipath, kernel.

1. INTRODUCTION

The phenomenon of multipath in radar arises particularly in dense
urban environments, where clutter causes the transmitted radar sig-
nal to travel through multiple routes. Once considered a nuisance
[1, 2], multipath effects are actively investigated as a useful resource
for tracking in urban environments.

Many researchers have studied the possibility of exploiting mul-
tipath favourably. In [3] the merits of using multipath is discussed
by illustrating the increase in radar visibility and sweep width in the
presence of multipath. Chakraborty et al [4] consider a 3-D terrain
with parallel walls and propose a particle filter for this setup. An Or-
thogonal Frequency Division Multiplexing (OFDM) scheme is used
by Sen et al [5] to improve the frequency diversity in a multipath
environment. Almost all the existing work impose some restrictions
on the geometry of the radar environment such as parallel walls etc
[3, 4]. Furthermore the filters used for target state estimation use
processed measurements (results of a detection stage using raw mea-
surements) as input [4, 6]. Nevertheless work by Morelande et al in
[7] suggest that using raw radar measurements directly results in a
lower Posterior Cramer-Rao Bound (PCRB).

In this paper we relax the assumption that the wall locations are
known exactly. Instead we assume that the location information is
only accurate up to a few wavelengths. This uncertainty is mod-
elled by introducing a uniformly distributed random phase shift to
each of the multipath signals. Further no restrictions such as paral-
lel/vertical/horizontal walls are imposed on the environment.

We use a particle filter to solve this non linear estimation prob-
lem. The principal challenge in particle filtering is choosing a good
importance density. This was particularly critical for us because the
uniformly distributed random phases increase the uncertainty of the
measurements significantly rendering a challenging estimation prob-
lem. A desirable choice for an importance density would be the op-
timal importance density (OID)[8]. However it is often difficult to

derive the OID in closed form. In our previous work we have pro-
posed a particle filter with unscented transform (UT) approximation
to the OID to track a target in a multipath environment where exact
wall locations are known (i.e. the aforementioned phase variables are
known) [9]. However that approach is not suitable to solve the esti-
mation problem considered here. The structure of the new estimation
problem suits the use of a particle filter where the particles are drawn
from a Markov Chain as in [10]. In particular the Markov Chain is
constructed by using a series of Gibbs and Metropolis-Hastings pro-
posals [11].

A common problem in sequential Monte Carlo methods is par-
ticle impoverishment [8]. A kernel based regularisation method
[12] is a widely used technique to reduce particle impoverishment.
Use of this method requires a selection of a parameter known as
kernel bandwidth and the common practice is to select this band-
width to minimize the mean integrated square error (MISE) [13].
We propose an adaptive scheme to choose this bandwidth which
seems to improve the robustness of the filter.

In summary the contributions of this paper extend and relate to
the prior work found in literature by proposing a MCMC based par-
ticle filter consisting of Gibbs and Metropolis-Hastings steps to track
a target in a partially known environment model. Secondly we pro-
pose an adaptive kernel bandwidth selection method to improve the
robustness of the MCMC particle filter.

The rest of the paper is organised as follows. Section 2 formu-
lates the estimation problem in the presence of multipath. Particle
filtering in the context of urban radar tracking is presented in Sec-
tion 3. The construction of the Markov Chain and the adaptive ker-
nel bandwidth selection method are discussed in Section 4 followed
by the results and conclusion to the paper.

2. MULTIPATH FILTERING PROBLEM

Consider a point target moving in a 2-D urban environment. Let
xk = [xk ẋk yk ẏk] denote the target state at time tk, where
(x, y) ∈ R2 and (ẋ, ẏ) ∈ R2 are position and velocities in the
XY plane. The state evolves as

xk = Fkxk−1 + wk, k = 1, 2, . . . , (1)

where Fk is a transition matrix which dictates constant velocity mo-
tion. wk is a Gaussian white noise process where cov(wk1 ,wk2) =
δk1−k2Qk with Qk being a positive semi-definite and symmetric
matrix.

We use a MIMO setup with N radar transmitters placed at suit-
able locations and M uniform linear arrays are used to capture radar
returns. The sensors sample the received signal with a period of T2.
All the reflections are assumed to be specular.
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Let the total number of paths between the nth transmitter and
the mth receiver be denoted by Pn,m. The signal vector received by
themth sensor at time tk+uT2 can be written for u = 0, . . . , U−1
as

Yk,m(u) = Hm(xk,ψk;u) + e(u), (2)
where e(u) is a circular symmetric complex white Gaussian process
with covariance matrix 2σ2I where the identity matrix with appro-
priate dimensions is denoted by I and

Hm(xk,ψk;u) =

N∑
n=1

µk,n,m(xk,ψk;uT2),

with the measurement function µk,n,m given by

µk,n,m(x,ψk; t) =

Pn,m∑
p=1

exp(jψp
n,m)gp

n,m(x; t), (3)

where gp
n,m(x; t) is the well known radar measurement function [14,

9] for a linear array receiver.
For multipaths the phase variable ψp

n,m is unknown and is as-
sumed to be uniformly distributed over the interval [0, 2π). This
models small uncertainties in the wall locations. The phase on the
direct path is set to zero since the direct path does not hit any walls.
The vector ψk denotes the collection of all random phases.

All the raw measurements could be separated into I-Q channels
and stacked together in a vector form to result in a measurement
equation as shown below:

yk = h(xk,ψk) + vk, (4)

where h(xk,ψk) is a known deterministic function of the target
state xk and ψk. The the noise vector vk is a white noise process
with covariance matrix σ2I.

Let the superscript notation denote the trajectory of the variable
in context over time (i.e. yk = [y′1, . . . ,y

′
k]
′). We define the multi-

path filtering problem as estimating the target state xk after observ-
ing yk.

3. PARTICLE FILTERING FOR URBAN RADAR
TRACKING

3.1. A Brief Review of Particle Filtering

A particle filter recursively approximates the posterior density using
a set of weighted random samples. The review presented in this
section follows the auxiliary variable implementation of [15]. Note
that most popular techniques including the Bootstrap Filter (BF) [16]
and the OID [8] are covered in the auxiliary variable framework.

Consider a first order Markov state sequence {zk, k ∈ N}. Let
yk be the measurement vector at time k and satisfies p(yk|zk) =
p(yk|zk). Assume that at time k − 1, the posterior is approxi-
mated using J samples z

(1)
k−1, . . . , z

(J)
k−1 and corresponding weights

w1
k−1, . . . , w

J
k−1 as follows:

p(zk−1|yk−1) ≈
J∑

j=1

wj
k−1δ(zk−1 − z

(j)
k−1). (5)

Baye’s rule leads to a posterior approximation at time k as shown
below:

p(zk|yk) ∝ p(yk|zk)p(zk|yk−1),

≈
J∑

i=1

wi
k−1p(yk|zk)p(zk|z(i)

k−1). (6)

Following [15], we reverse the marginalisation in (6) and intro-
duce the particle index i as an auxiliary variable. This gives

p(zk, i|yk) ∝ wi
k−1p(yk|zk)p(zk|z(i)

k−1). (7)

An approximation to the posterior at time k can be obtained by sam-
pling from (7). The auxiliary variable which can be discarded after
sampling, is intended to assist in the aim of drawing samples of the
state vector. Often it is difficult to sample from p(zk, i|yk) and in-
stead a suitable candidate distribution known as importance density
q(zk, i|yk) is used to obtain samples which are then appropriately
weighted. The choice of the importance density is crucial for a good
particle filter design. The BF is obtained by choosing

qbs(zk, i|yk) ∝ wi
k−1p(zk|z(i)

k−1). (8)

The main drawback of qbs(·) is that the current measurement yk

is not used to draw samples.
A desirable importance density is the OID which involves draw-

ing directly from (7). Let φi =
∫
p(yk|zk)p(zk|z(i)

k−1)dzk. Then it
can be shown that the OID is given by

qoid(xz, i|yk) ∝ γipi(zk|yk), (9)

where γi = wi
k−1φi and

pi(zk|yk) = p(yk|zk)p(zk|z(i)
k−1)/φi.

Note that the importance weights of the samples obtained from
the OID are constant irrespective of the value of the sample. It is
this property which results in the use of the term OID for the density
(9). Unlike the BF the OID has the desirable property of using the
current measurement to influence the selection of the particle index
and the state vector.

3.2. Developing a Particle Filter for a Partially Known Urban
Environment

Applying (7) to our estimation problem results in the following.

p(xk, i|yk) ∝ wi
k−1

∫
p(yk|ψk,xk)p(ψk)dψkp(xk|x(i)

k−1).

(10)
The integral appearing in (10) is the normalising constant of a Gen-
eralised Von Mises (GVM) distribution introduced in [17]. This
quantity is not known in closed form but it is expressible as an in-
finite series summation involving products of modified Bessel func-
tions of the first kind [17]. It is not clear how a term of this form
could be combined with the prior to produce a sampling density for
xk and i.

Calculating the integral in (10) could be avoided by treating ψk

as part of the state at time k and sampling from

p(xk,ψk, i|y
k) ∝ wi

k−1p(yk|xk,ψk)p(xk|x(i)
k−1)p(ψk). (11)

Note that if the phase variables are known, the filtering problem
reduces to that of [9] and the UT approximation to the OID was
shown to be a desirable importance density in this instance. However
approximating (11) using the UT is not viable because of the large
degree of uncertainty introduced by the random phases.

The challenges explained above lead us to explore alternative
solutions. Note that we have an efficient importance density (i.e the
UT approximation to the OID) if the random phases are known. On
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the other hand consider the situation where random phases are un-
known but the target state is known. The distribution p(ψk|xk,y

k)
can be shown to be GVM and constructing a Gibbs chain for GVM
is straightforward. In other words the relationship between ψk and
xk is such that each can be efficiently sampled given the knowledge
of the other. This particular structure of the problem suggests the
use of the Markov chain Monte Carlo (MCMC) method referred to
as Gibbs sampling [11]. The Gibbs sampling procedure produces
samples from a given distribution by constructing a Markov chain
whose stationary distribution is that distribution. In the following
section we show how this idea can be applied to drawing samples
from (7).

4. MCMC PARTICLE FILTER

The MCMC particle filter was previously proposed in [10] where
Metropolis-Hastings steps were used. Here we propose a procedure
which combines Gibbs sampling with Metropolis-Hastings steps.
We also propose an adaptive kernel technique to enhance the mo-
bility of the Markov chain and increase filter robustness.

4.1. Construction of the Markov Chain

The Markov chain used here samples the phases, sample index and
kinematic state in turn, as illustrated below:

(x,ψ, i)
step1
99K (x,ψ′, i)

step 2−−−→ (x,ψ′, i′)
step 3−−−→ (x′,ψ′, i′).

Each step is described in detail below.
As mentioned previously, p(ψk|xk, i,y

k) is a GVM distribu-
tion [17]. The conditional marginal distributions of the GVM dis-
tribution are the well known Von Mises (VM) distributions. Thus,
in the first step phases are drawn from a series of VM distributions
as in

qψ(ψ
(j)
k |ψ

(j−1)
k ) =

q∏
i=1

VM(ψ
(j)
k,i ;ψ

(j)
k,1:i−1,ψ

(j−1)
k,i+1:q),

whereψ(j)
k,n:m = [ψj

k,n, ψ
j
k,n+1 . . . , ψ

j
k,m] for n < m. More details

on the form of the VM conditional marginal distributions can be
found in [17].

In the second step the sample index is drawn from the condi-
tional marginal distribution

p(i|ψk,xk,y
k) ∝ N (xk;Fkx

(i)
k−1,Qk). (12)

where N (·;µ,Σ) denotes the normal distribution with mean and
covariance being µ and Σ respectively.

In a Gibbs procedure the third step would require drawing a
sample from p(xk|ψk, i,y

k) but this distribution is not available
in closed form. As a solution we fall back from a Gibbs step to a
Metropolis-Hastings step [11]. This involves drawing a sample from
a suitable proposal and accepting it with a certain probability such
that the Markov Chain converges to the desired distribution. We use
a proposal which approximates the Gibbs proposal. In particular, the
UT approximation to p(xk|ψk, i,y

k) is used. This was shown to
be effective in [9] for the case of known phases. Let qx denote this
proposal.

The whole process of generating the Markov Chain is given in
algorithmic form in algorithm 1.

Although in theory, a Markov Chain converges asymptotically
to its stationary distribution irrespective of the initial starting point

Algorithm 1: Algorithm to generate a Markov Chain with
p(xk, i,ψk|yk) as the stationary distribution.

Assign initial values to (x(0)
k ,ψ

(0)
k , i(0)).

for n = 1 to S do
Draw ψ(n)

k ∼ qψ(·|ψ(n−1)
k ,yk).

Draw i(n) with Probability(i(n) = j)
∝ N (xk;Fkx

(j)
k−1,Qk).

Draw v ∼ qx(·|ψ(n)
k , i(n),yk).

Let

wnew =
p(v|ψ(n)

k , i(n),yk)

qx(v|ψ(n)
k , i(n),yk)

,

wold =
p(x

(n−1)
k |ψ(n)

k , i(n),yk)

qx(x
(n−1)
k |ψ(n)

k , i(n),yk)
,

r = min(1, wnew/wold).

x
(n)
k =

{
v with probability r,
x
(n−1)
k with probability 1− r.

end

(x(0)
k ,ψ

(0)
k , i(0)), in practice a good starting point is desirable as it

will generally result in fast convergence of the chain. We choose an
initial starting point by generating few samples from the prediction
distribution and selecting the one with the highest likelihood. We
then monitor the mobility of the chain and re-start if necessary using
the sample with the next highest likelihood.

4.2. Adaptive Kernel Bandwidth Selection to Improve the Mo-
bility of the Markov Chain

A potential drawback of the proposed MCMC particle filter is the
issue of mobility where the Markov Chain gets stuck around a par-
ticular state. A good example of when this could happen is in step 2
of algorithm 1 where a particular index is heavily weighted.

In particle filtering two methods commonly used to improve di-
versity are resample-move [18] and particle regularisation using a
kernel [12]. In this paper we have chosen to use the kernel method.
We use a Gaussian kernel which results in replacing the process
noise covariance matrix Qk by Qk + C(h) where C(h) = hΣ
with Σ the sample covariance matrix and h the kernel bandwidth.

The kernel bandwidth plays an important role. The most com-
mon choices of the kernel bandwidth are the formulae given in [13]
which aim to minimise the MISE between the target distribution and
the regularised representation. While minimisation of the MISE may
be a suitable aim in kernel density approximation, it is not neces-
sarily appropriate for the purposes of particle filtering. Instead, we
propose choosing h adaptively by solving

h = argmax
b

J∑
j=1

∫
lk(xk,ψ

j
k)N (xk; x̂

j
k,Qk+C(b))dxk. (13)

where x̂j
k = Fkx

(j)
k−1, lk(·) is the likelihood andψj

k ∼ p(ψk|yk, x̂
j
k).

Intuitively (13) selects the kernel bandwidth with the strongest over-
lap (in terms of probability density) between the likelihood and
the prior. Simulation results suggest an increase in robustness by
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using this approach. We use a grid search to solve the optimisation
problem (13) and the UT is used to approximate the integral.

5. SIMULATION EXAMPLE

We used the simulation setup depicted in Figure 1. The setup is
such that the receiver only receives multipaths (i.e. a path that hits
the target as well as a wall(s)) throughout most of the trajectory. A
direct path is available only towards the end of the trajectory.

Initial target state was drawn fromN (x0;µ0,P0) where

µ0 =

 2062
0.55
1240
15.5

 and P0 = I2 ⊗
[

0.004 0
0 0.0005

]
. (14)

and the Kronecker product is denoted by the symbol ⊗ .
The covariance of the prediction density Qk was set at

Qk = I2 ⊗
[

0.0067 0.01
0.01 0.0067

]
. (15)

The time series emitted by the radar transmitted at time k is denoted
by sk(t) and is chosen as a chirp with energy E given by

sk(t) =

√
E√
P

(P−1)/2∑
p=−(P−1)/2

exp {[jυ − 1/(2ρ2)](t− pT1)
2}

(πρ2)1/4
.

(16)
The number of pulses P is 3. The chirp parameter υ is chosen to
result in an effective bandwidth of 40MHz and width parameter ρ is
chosen such that the effective duration of the pulse is D = 250ns.
The pulse repetition interval T1 is set to 100µs. The signal energy
E is chosen to result in an average SNR of 20dB at the output of the
matched filter over the nominal trajectory. The state sampling period
tk − tk−1 is set to 1s.

The radar receiver consists of 3 collinear elements separated
from each other by 4λ, where the wavelength λ of the carrier is set
at 0.1m. The receiver samples the incoming signal with a sampling
period of T2 = 10ns. The measurement noise covariance is set using
σ2 = 0.4.
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Fig. 1. Simulation setup

Algorithm performance is measured by averaging over 100 mea-
surement realisations. Figure 2(a) shows a comparison of the pro-
posed filter with alternative filters for J = 300 particles. One par-
ticular design is the UT approximated particle filter (UT PF) where

the importance density consists of the UT approximation to the OID
[9] in conjunction with drawing phase samples from p(ψk|yk, x̂

i)
where x̂i is the predicted mean of the ith particle. Lack of space
restricts us from explaining the filter in more detail. Unsurprisingly
the bootstrap filter fails to keep up with tracking. The UT PF de-
sign has a comparable performance to the proposed MCMC particle
filter but seems unable to take advantage of the more informative
measurements available during the latter stage of the trajectory.

The effect of choosing the kernel bandwidth adaptively for the
proposed MCMC particle filter is also illustrated in figure 2(a). The
bandwidth for the case of fixed kernel was chosen according to [13].
The results suggest that the adaptive kernel is more robust as evi-
denced by the much lower average error during the latter stage in the
presence of sudden informative measurements. However the fixed
kernel demonstrated marginally better performance when only mul-
tipath is present in the measurements. This suggests the adaptive
kernel choice presents a trade off between accuracy and robustness.

Figure 2(b) illustrates the results of simulating the MCMC parti-
cle filter with the adaptive kernel with a varying number of particles.
As expected an increase in the number of particles yields better re-
sults. However, the improvements in performance between 100, 300,
and 500 particles are marginal. This indicates that the proposed filter
can produce acceptable performance with comparatively few parti-
cles.
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Fig. 2. Simulation results: (a) Comparison with alternative filter
designs (b) Effect of number J of particles.

6. CONCLUSION

We have considered a partially known urban radar environment
where the uncertainty in the precise locations of the walls is mod-
elled by introducing uniformly distributed random phase shifts to
the measurement model. This makes the filtering problem very
challenging. We have proposed a MCMC particle filter where the
Markov Chain is constructed from Gibbs steps and Metropolis-
Hastings steps. The suggested MCMC particle filter can be adapted
to generic filtering problems where the state space could be par-
titioned to blocks where sampling from a block is complemented
when all the other blocks are known. An adaptive method to choose
the kernel bandwidth to improve the mobility of the Markov Chain
is proposed. A challenging tracking setup is used to demonstrate the
effectiveness of the proposed filter.
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