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ABSTRACT
The paper considers the problem of performing distributed particle
ltering in intermittently connected networks with nonlinear state
dynamics. In the context of large, geographically-distributed sensor
networks, communication delays affect the convergence of the con-
sensus algorithms used to derive the global state estimate from local
estimates. We propose a non-linear fusion rule that relaxes the con-
dition of requiring convergence of the consensus step between two
successive iterations of the localized particle lters, thereby, allow-
ing the consensus step to catch up with the localized lters in case
of communication delays. Our Monte Carlo simulations illustrate
the ability of the modied consensus/fusion based distributed imple-
mentation of the particle lter (MCF/DPF) to successfully handle
intermittence in the network connectivity.

Index Terms— Consensus algorithms, Distributed estimation,
Multi-sensor tracking, Intermittent networks, and Particle lters.

1. INTRODUCTION

Motivated by multisensor navigation and tracking applications, the
paper considers distributed particle lter [1]-[3] implementations for
intermittently connected networks [4] with nonlinear state dynam-
ics. Distributed estimation in such sensor networks share some form
of a consensus procedure [5, 6] typically based on the Chong-Mori-
Chang track-fusion principle [7] that implicitly/explicitly fuses lo-
cal estimates obtained from the localized lters to form the global
estimate. Intermittent network connectivity results in information
loss, signicant delays in the convergence of the consensus algo-
rithms, and loss in synchronization between the localized and fusion
lters used to achieve the global consensus. In this paper, we study
a generic framework for distributed estimation in intermittently con-
nected networks from the consensus-convergence perspective. Here,
the fundamental question is: How can loss of synchronization be-
tween the localized and fusion filters be adequately resolved to com-
pensate for delays in the convergence of the consensus algorithms?
Prior Work: Distributed estimation of an unknown set of parame-
ters by a network of randomly deployed sensors is of relevance in
many nonlinear signal processing applications [8]-[18]. Most of the
earlier work in distributed nonlinear estimation was based on mes-
sage passing particle lter implementations [19, 20], where infor-
mation is communicated across the network in a predened orderly
fashion. Though a fusion centre is not needed, the network topology
is assumed known in message passing mechanisms. For arbitrar-
ily congured networks with unknown topologies, consensus-based
particle lter approaches [21]-[36] are more efcient alternatives.
Sensors interchange information only with their immediate neigh-
bours and iteratively rene the local estimates based on the informa-
tion received. Among the types of information exchanged locally in

consensus based approaches, communicating local state posteriors
[21]-[28] has been shown to be more resilient to packet losses in er-
ror prone networks as compared to sharing of local likelihoods [29]-
[36]. In principle, any lost information should be contained in the
following posteriors and, therefore, can be recovered. However, the
main drawback of such methods is that their performance depends on
the convergence [37] of the consensus step. In [21, 22], we have pre-
viously proposed a consensus/fusion based distributed implementa-
tion of the particle lter (CF/DPF) that introduces a separate consen-
sus lter (referred to as the fusion lter) to derive the global poste-
rior. In reality, communication channels are time-varying and unreli-
able with intermittent connectivity. Consequently, the fusion lter in
the CF/DPF is unable to synchronize with the localized lters. Other
consensus based estimation approaches [23]-[28] are also suscepti-
ble to such out-of-synchronization issues. Spurred by this consider-
ation, the paper focuses on the design of a nonlinear, distributed es-
timation approach for unreliable, intermittently connected networks.

The main contribution of this paper is to extend the distributed
estimation framework to unreliable networks where the localized
and fusion lters lose synchronization due to delays in the conver-
gence of the consensus algorithms used in the fusion lters. Though
we explain the methodology in terms of the CF/DPF, generaliza-
tion to other consensus based distributed estimation approaches is
straightforward. We propose the modied CF/DPF (MCF/DPF) to
handle such out of synchronization issues by implementing the mod-
ied fusion lter to run at a rate different from that of the local
lters. The modied fusion lter is based on a non-linear fusion
rule derived in the paper as an alternative to the Chong-Mori-Chang
track-fusion principle. The condition for achieving consensus be-
tween two successive iterations of the localized particle lter is re-
laxed, which enables the consensus step to converge without strict
time limitations. Our numerical simulations verify the efciency of
the proposed MCF/DPF in such intermittently connected networks.

The rest of the paper is organized as follows. Section 2 formu-
lates the problem and introduces both the centralized and CF/DPF
implementations. The modied fusion lter is discussed in Sec-
tion 3, while Section 4 presents the simulation results.

2. PROBLEM FORMULATION AND PARTICLE FILTER

The overall state-space model is given by

State Model: x(k)=f(x(k − 1)) + ξ(k) (1)

Observation Model:




z(1)(k)

...
z(N)(k)





︸ ︷︷ ︸
z(k)

=




g(1)(x(k))

...
g(N)(x(k))





︸ ︷︷ ︸
g(x(k))

+




ζ(1)(k)

...
ζ(N)(k)





︸ ︷︷ ︸
ζ(k)

(2)
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for a sensor network comprising of N nodes and observing a set of
nx state variables x = [X1, X2, . . . , Xnx ]

T . The global observa-
tion vector is z = [z(1)T , . . . ,z(N)T ]T with z(l)(k) denoting the
observation at node l, (1 ≤ l ≤ N ), at time instant k. Symbol T
denotes transposition and {ξ(·), ζ(·)} are, respectively, the global
non-Gaussian uncertainties in the process and observation models.

The optimal Bayesian ltering recursion for iteration k is

P (x(k)|z(1 :k−1)) = (3)
∫

P (x(k−1)|z(1 :k−1))f(x(k)|x(k−1))dx(k−1)

and P (x(k)|z(1 :k)) = P (z(k)|x(k))P (x(k)|z(1 :k−1))
P (z(k)|z(1 :k−1))

.(4)

The particle lter is based on the principle of sequential importance
sampling (SIS) [39], where the ltering distribution P (x(k)|z(1:k))
is represented by its samples (particles) {Xi(k)}Ns

i=1 derived from a
proposal distribution q(x(0 : k)|z(1 : k)) with normalized weights
Wi(k) = P (Xi(k)|z(1:k))

q(Xi(0:k)|z(1:k))
associated with the vector particles. The

particle lter implements the ltering recursions by propagating the
particles Xi(k) and associated weights Wi(k), (1 ≤ i ≤ Ns), as

Xi(k) ∼ q(Xi(k)|Xi(0 :k−1), z(1 :k)) (5)

Wi(k) ∝ Wi(k − 1)
P (z(k)|Xi(k))P (Xi(k)|Xi(k−1))

q(Xi(k)|Xi(0 :k−1), z(1 :k))
. (6)

2.1. Distributed Particle Filter

Our distributed implementation is based on the following model

x(k) = f(x(k − 1)) + ξ(k) (7)
z(l)(k) = g(l)(x(k)) + ζ(l)(k), (8)

for sensor nodes (1 ≤ l ≤ N). The entire state vector x(k) is
estimated by running one local lter at each node based only on its
local observation z(l)(1 : k). By introducing a fusion lter (one
per sensor node), the CF/DPF [21, 22] fuses the local ltering and
prediction distributions to derive the global posterior distribution

P
(
x(0 :k)|z(1 :k)

)
∝

∏N
l=1 P

(l)
(
x(k)|z(l)(1 :k)

)

∏N
l=1 P

(l)
(
x(k)|z(l)(1 :k−1)

) (9)

×P
(
x(0 :k)|z(1 :k−1)

)
,

using the fusion rule [7]. Here, P (l)(.) is the relevant local posterior
at node l. The k�’th iteration of the CF/DPF is based on the following
steps. The weighted particles {X(l,LF)

i (k−1),W (l,LF)
i (k−1)} for

the local lter and particles {X(l,FF)
i (k−1),W (l,FF)

i (k−1)} for the
fusion lter are available from the previous iteration at each node.
1. Local Filters: The local lters are direct implementation of
Eqs. (5)�–(6) computing {X(l,LF)

i (k),W (l,LF)
i (k)} from {X(l,LF)

i (k−
1),W (l,LF)

i (k−1)} and local observations z(l)(1 :k), followed by a
re-sampling step if degeneracy occurs. The proposal distribution for
the local lters is modeled as P (l)(x(k)|x(k−1)).
2. Local Statistics: Given {X(l,LF)

i (k),W (l,LF)
i (k)}, the local l-

ter at node l, (1 ≤ l ≤ N ), computes the minimum mean square
error estimates (MMSE) of the mean µ(l)(k) and error covariance
P (l)(k) of its local ltering distribution P (l)(x(k)|z(l)(1 : k)) as
well as the MMSE of the mean υ(l)(k) and error covariance R(l)(k)
of its local prediction distribution P (l)(x(k)|z(l)(1 :k−1)).

3. Consensus Step: The two product densities in the rst right hand
term in Eq. (9) are approximated [42] as

N∏

l=1

P (l)(x(k)|z(l)(1 :k))!
N∏

l=1

N(µ(l)(k),P (l)(k))∝N (µ(k),P (k))

N∏

l=1

P (l)(x(k)|z(l)(1 :k−1))!
N∏

l=1

N(υ(l)(k),R(l)(k))∝N(υ(k),R(k))

where N (·, ·) denotes a Gaussian distribution. The statistics of the
two product densities {µ(k),P (k)} and {υ(k),R(k)} are com-
puted by running four vector consensus algorithms [21, 22].
4. Global Estimates: The fusion lter estimates the global poste-
rior distribution P (x(0 : k)|z(1 : k)). Being a particle lter itself,
implementation of the fusion lter requires the proposal distribution
from which particles of the fusion lter are derived, i.e.,

X(l,FF)
i (k) ∼ q(x(k)|x(k−1),z(1 :k)). (10)

Please refer to [21, 22] for three different choices of the fusion lter�’s
proposal distribution. The weight update equation is given by

W (l,FF)
i (k)∝W (l,FF)

i (k−1) × (11)

N (X(l,FF)
i (k);µ(k),P (k))P (X(l,FF)

i (k)|X(l,FF)
i (k−1))

N (X(l,FF)
i (k);υ(k),R(k))q(x(k)|x(k−1),z(1 :k))

.

Steps (2)�–(4) describe the fusion lter at iteration k. For iteration
k+1, the time index k is incremented and Steps (1)�–(4) are repeated.

We note that approximating the two product terms in the con-
sensus step (Step 3 above) does not restrict the global posterior to
be Gaussian as can be seen in Eq. (9). The last term in (9) is de-
rived from the nonlinear state model and global posterior obtained
from the previous CF/DPF iteration. Similarly, the local posteriors
resulting from the localized particle lters are non-Gaussians by na-
ture allowing the CF/DPF to retain its ability to handle non-Gaussian
forcing and noise terms.

3. MODIFIED FUSION FILTER

In the CF/DPF, the local lters and the fusion lters can run out of
synchronization due to intermittent network connectivity. The lo-
cal lters are conned to their sensor node and unaffected by loss
of connectivity. The fusion lters, on the other hand, run consen-
sus algorithms. The convergence of these consensus algorithms is
delayed if the communication bandwidth is reduced. In this sec-
tion, we develop ways of dealing with such intermittent connectivity
issues. First, let us introduce the notation. We assume that the ob-
servations arrive at constant time intervals of ∆T . Each iteration of
the local lters is performed within this interval, which we will refer
to as the local lter�’s estimation interval. The duration (the fusion
lter�’s estimation interval) of the update cycle of the fusion lter is
denoted by Tc. Fig. 1 illustrates two scenarios dealing with differ-
ent fusion lter�’s estimation intervals. Fig. 1(a) is the ideal scenario
where Tc ≤ ∆T and the fusion lter�’s consensus step converges be-
fore the new iteration of the local lter. The timing diagram of the
local lter is shown in the bottom subplot of Fig. 1(a) and the timing
diagram of the fusion lter is shown in the top subplot of Fig. 1(a).
In such a scenario, the local and fusion lters stay synchronized.
Fig. 1(b) considers a more problematic scenario when Tc > ∆T .
Even with ideal connectivity, the fusion lter will continue to lag the
localized lters with no hope of it catching up. The bottom two tim-
ing diagrams corresponding to the local and fusion lters in Fig. 1(b)
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Fig. 1. Multirate implementations for the local and fusion lters: (a) (Tc ≤ ∆T ); (b) (Tc > ∆T ). In (b), the CF/DPF lag grows exponentially.

refer to this scenario with Tc = 2∆T . As illustrated, the lag between
the fusion and localized lters grows exponentially with time in this
scenario. An improvement to the fusion lter is suggested in the
top subplot of Fig. 1(b), where the modied fusion lter derives the
global posterior at every alternate (1, 3, 5, . . .) iteration of the local
lter by using the most recently available local ltering density of
the localized lters. This allows the fusion lter to catch up with the
localized lter even for cases Tc > ∆T . Such a modied fusion im-
plementation requires an updated fusion rule for the global posterior
density as fusion is not conducted at every local lter iteration. This
is considered next in the following discussion.

In our explanation, we use the notation that the fusion lter
takes up to m iterations of the local lters to converge. At iteration
k + m, this implies that node l, for (1 ≤ l ≤ N ), has a particle-
based approximation of the local ltering distributions P(l)(x(k +
m)|z(l)(1 : k + m)), while its fusion lter has a particle-based ap-
proximation of the global posterior distribution P (x(0 :k)|z(1 :k))
for iteration k. In the conventional fusion lter, the statistics of
P (l)(x(k+1)|z(l)(1 :k+1)), for (1 ≤ l ≤ N ), are used in the next
consensus step of the fusion lter which then computes the global
posterior P (x(0 : k + 1)|z(1 : k + 1)) based on Eq. (9). The mod-
ied fusion lter uses the most recent local ltering distributions
P (l)(x(k +m)|z(l)(1 :k +m)) according to Theorem 1.

Theorem 1. Conditioned on the state variables, assume that the
observations made at node l are independent of the observations
made at node j, (j &= l). The global posterior distribution for a
N–sensor network at iteration k+m is then given by

P (x(0 :k+m)|z(1 :k+m)) ∝
N∏

l=1

∏k+m
k′=k+1 P

(l)
(
x(k′)|z(l)(1 :k′)

)

∏k+m
k′=k+1 P

(l) (x(k′)|z(l)(1 :k′−1))
(12)

×
k+m∏

k′=k+1

P
(
x(k′)|x(k′−1)

)
× P (x(0 :k)|z(1 :k)) .

Proof. Theorem 1 is obtained using: (i) The Markovian property of
the state variables; (ii) Assuming that the local observations made at
two sensor nodes conditioned on the state variables are independent
of each other, and; (iii) Using the Bayes�’ rule. First, by applying the
Bayes�’ rule to Eq. (9), the posterior distribution at iteration k can be
represented as follows

P
(
x(0 :k)|z(1 :k)

)
∝P

(
z(k)|x(k)

)
P
(
x(0 :k)|z(1 :k−1)

)
(13)

Now, using the Markovian property of the state variables, and assum-
ing that the local observations made at two sensor nodes conditioned
on the state variables are independent of each other (13) becomes

P
(
x(0 :k)|z(1 :k)

)
∝
(

N∏

l=1

P (l)(z(l)(k)|x(k)
)
)

(14)

×P
(
x(k)|x(k−1)

)
P
(
x(0 :k−1)|z(1 :k−1)

)
.

At node l, for (1 ≤ l ≤ N ), using the Bayes�’ rule

P (l)
(
z(l)(k)|x(k)

)
=

P (l)(x(k)|z(l)(1 :k))

P (l) (x(k)|z(l)(1 :k−1))
(15)

×P (l)
(
z(l)(k)|z(l)(1 :k−1)

)
.

Next, we write the posterior density at iteration k+m, i.e.,

P (x(0 :k+m)|z(1 :k+m))∝P (x(0 :k+m)|z(1 :k+m−1))

×

∏N
l=1 P

(l)
(
x(k+m)|z(l)(1 :k+m)

)

∏N
l=1 P

(l) (x(k+m)|z(l)(1 :k+m−1))
. (16)

Then the rst term on the right hand side of (16) is factorized as

P (x(0 :k+m)|z(1 :k+m−1))=P (x(k+m)|x(k+m−1))

P (x(0 :k+m−1)|z(1 :k+m−1)) . (17)

As in Eq. (16), we continue to expand P (x(0 : k+m−1)|z(1 :
k+m−1)) (i.e., the posterior distribution at iteration k+m−1) all
the way back to iteration k+1 to prove Eq. (12).

In the consensus step, two average consensus algorithms compute

N∏

l=1

k+m∏

k′=k+1

P (l)
(
x(k′)|z(l)(1 :k′)

)
∝ (18)

N∏

l=1

N
(
µ(l)(k+1:k+m),P (l)(k+1:k+m)

)

and
N∏

l=1

k+m∏

k′=k+1

P (l)
(
x(k′)|z(l)(1 :k′−1)

)
∝ (19)

N∏

l=1

N
(
υ(l)(k+1:k+m),R(l)(k+1:k+m)

)
,
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Fig. 2. Robot trajectories estimated from the centralized, MCF/DPF,
and CF/DPF implementations in a 20-node network. Trajectories
from centralized and MCF/DPF overlap and are indistinguishable.

instead of computing
∏N

l=1P
(l)(x(k)|z(l)(1 :k)) and

∏N
l=1P

(l)(x(k)|
z(l)(1 :k−1)) as was the case for the conventional fusion lter. The
modied fusion lter starts with a set of particles X(MFF,l)

i (k),

W (MFF,l)
i (k) approximating P (x(0 : k)|z(1 : k)) and generates

updated particles X(MFF,l)
i (k+m),W (MFF,l)

i (k+m) for P (x(0 :
k+m)|z(1 :k+m)) using the following weight update equation

W (l,MFF)
i (k+m)∝W (l,MFF)

i (k)× (20)
∏k+m

k′=k+1 P
(l)

(
X(l,MFF)

i (k′)|X(l,MFF)
i (k′−1)

)

N
(
X(l,MFF)

i (k+m);υ(k+1:k+m),R(k+1:k+m)
) ,

which is obtained directly from (12). Note that the normal approxi-
mation in Eqs. (18)-(20) is similar to the one used in the conventional
fusion lter. Furthermore, we note that the modication requires
prediction of the particles from iteration k all the way to k+m to
evaluate the second term on the right hand side of (20).

4. EXPERIMENTAL RESULTS

In this paper, we consider a distributed mobile robot localization
problem [26, 40] based on angle-only measurements [39]. This is
a good benchmark since the underlying dynamics is nonlinear and
the state is unobservable to individual sensors, which justies the
need for some communication between them. The state variables of
the unicycle robot is dened as x = [X, Y, θ]T , where X and Y
are 2D coordinates of the robot while θ is its orientation. The linear
velocity and angular velocity are denoted by Ṽ (k) and Ω̃(k), respec-
tively. The nonlinear, time-invariant dynamical model for the robot
follows the following discrete-time unicycle model [40]

X(k+1)=X(k)+
Ṽ (k)

Ω̃(k)

(
sin

(
θ(k)+Ω̃(k)∆T

)
−sin

(
θ(k)

))
(21)

Y (k+1)=Y (k)+
Ṽ (k)

Ω̃(k)

(
cos

(
θ(k)+Ω̃(k)∆T

)
−cos

(
θ(k)

))
(22)

θ(k+1)=θ(k) + Ω̃(k)∆T + ξθ∆T, (23)

with ∆T the sampling time and ξθ the orientation noise term. Terms
Ω̃(k) = Ω(k) + ξΩ(k) and Ṽ (k) = V (k) + ξv(k), where {ξv, ξΩ}
are the noise terms in these control inputs. The design parameters
are: ∆T = 1 and mean velocity of 30 cm/s with a standard de-
viation of 5 cm/s. The random noises are Gaussian, i.e., ξv(k) ∼
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Fig. 3. RMS errors from Monte Carlo simulations for the central-
ized, CF/DPF (fusion lter�’s outputs from two randomly selected
nodes {11, 13} since CF/DPF does not converge), and MCF/DPF.

N (0.3, .05), ξΩ(k) ∼ N (0.08, .01) and ξθ ∼ N (0, .01). Measure-
ments at each node l in a 20-node network are the target�’s bearings

Z(l)(k) = atan
(
X(k) −X(l)

Y (k)− Y (l)

)
+ ζ(l)(k), (24)

where (X(l), Y (l)) are the coordinates of node l. Three particle
lter implementations are tested: (i) Centralized approach (bench-
mark); (ii) CF/DPF (since consensus is not reached, the fusion esti-
mates in the CF/DPF are different from one node to another. Results
from nodes ({11, 13}) are included), and; (iii) MCF/DPF. We con-
sider Ns = 20, 000 particles in the centralized implementation and
Ns = 1000 particles at each node for implementations (ii)-(iii) to
keep the total particles same in (i) to (iii). Fig. 2 plots one realiza-
tion of the sensor placement along with the estimated robot�’s tra-
jectories obtained from implementations (i) to (iii). In (ii)-(iii), the
fusion lters take up to two iterations of the localized particle lters.
The CF/DPF does not reach consensus, while the MF/DPF performs
consensus at alternate iterations of the local lters. Fig. 2 illustrates
that the estimates of the modied fusion lter are much closer to its
centralized counterpart. Fig. 3 shows the RMS error curves for the
target�’s position based on a Monte Carlo simulation of 100 runs. The
performance of the proposed MCF/DPF remains close to its central-
ized counterpart. In other nonlinear tracking scenarios with non-
Gaussian forcings that we tested, the MCF/DPF successfully han-
dled intermittence in network connectivity with performance close
to its centralized counterpart with no intermittance issues.

5. SUMMARY

The paper proposes a distributed estimation framework for intermit-
tently connected networks with nonlinear dynamics. To illustrate the
framework, a consensus-based distributed particle lter implementa-
tion, MCF/DPF, is implemented to cope with intermittent communi-
cation connectivity. At each node, the MCF/DPF runs two particle
lters: (a) The local lter is based only on the node�’s local observa-
tions and recursively derives the local estimates, and; (b) The modi-
ed fusion lter (similar in concept to the channel lter [41]) extracts
new information from the local estimates obtained from the neigh-
boring nodes. The MCF/DPF allows the modied fusion lter to run
at a rate different from that of the local lters, therefore, enabling
the consensus step to converge without strict time limitations. Future
work will consider multitarget tracking, which is likely to introduce
a multinominal posterior.
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