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ABSTRACT
The paper considers the problem of performing distributed particle
ltering in intermittently connected networks with nonlinear state
dynamics. In the context of large, geographically-distributed sensor
networks, communication delays affect the convergence of the con-
sensus algorithms used to derive the global state estimate from local
estimates. We propose a non-linear fusion rule that relaxes the con-
dition of requiring convergence of the consensus step between two
successive iterations of the localized particle lters, thereby, allow-
ing the consensus step to catch up with the localized lters in case
of communication delays. Our Monte Carlo simulations illustrate
the ability of the modied consensus/fusion based distributed imple-
mentation of the particle lter (MCF/DPF) to successfully handle
intermittence in the network connectivity.

Index Terms— Consensus algorithms, Distributed estimation,
Multi-sensor tracking, Intermittent networks, and Particle lters.

1. INTRODUCTION

Motivated by multisensor navigation and tracking applications, the
paper considers distributed particle lter [1]-[3] implementations for
intermittently connected networks [4] with nonlinear state dynam-
ics. Distributed estimation in such sensor networks share some form
of a consensus procedure [5, 6] typically based on the Chong-Mori-
Chang track-fusion principle [7] that implicitly/explicitly fuses lo-
cal estimates obtained from the localized lters to form the global
estimate. Intermittent network connectivity results in information
loss, signicant delays in the convergence of the consensus algo-
rithms, and loss in synchronization between the localized and fusion
lters used to achieve the global consensus. In this paper, we study
a generic framework for distributed estimation in intermittently con-
nected networks from the consensus-convergence perspective. Here,
the fundamental question is: How can loss of synchronization be-
tween the localized and fusion filters be adequately resolved to com-
pensate for delays in the convergence of the consensus algorithms?
Prior Work: Distributed estimation of an unknown set of parame-
ters by a network of randomly deployed sensors is of relevance in
many nonlinear signal processing applications [8]-[18]. Most of the
earlier work in distributed nonlinear estimation was based on mes-
sage passing particle lter implementations [19, 20], where infor-
mation is communicated across the network in a predened orderly
fashion. Though a fusion centre is not needed, the network topology
is assumed known in message passing mechanisms. For arbitrar-
ily congured networks with unknown topologies, consensus-based
particle lter approaches [21]-[36] are more efcient alternatives.
Sensors interchange information only with their immediate neigh-
bours and iteratively rene the local estimates based on the informa-
tion received. Among the types of information exchanged locally in

consensus based approaches, communicating local state posteriors
[21]-[28] has been shown to be more resilient to packet losses in er-
ror prone networks as compared to sharing of local likelihoods [29]-
[36]. In principle, any lost information should be contained in the
following posteriors and, therefore, can be recovered. However, the
main drawback of such methods is that their performance depends on
the convergence [37] of the consensus step. In [21, 22], we have pre-
viously proposed a consensus/fusion based distributed implementa-
tion of the particle lter (CF/DPF) that introduces a separate consen-
sus lter (referred to as the fusion lter) to derive the global poste-
rior. In reality, communication channels are time-varying and unreli-
able with intermittent connectivity. Consequently, the fusion lter in
the CF/DPF is unable to synchronize with the localized lters. Other
consensus based estimation approaches [23]-[28] are also suscepti-
ble to such out-of-synchronization issues. Spurred by this consider-
ation, the paper focuses on the design of a nonlinear, distributed es-
timation approach for unreliable, intermittently connected networks.

The main contribution of this paper is to extend the distributed
estimation framework to unreliable networks where the localized
and fusion lters lose synchronization due to delays in the conver-
gence of the consensus algorithms used in the fusion lters. Though
we explain the methodology in terms of the CF/DPF, generaliza-
tion to other consensus based distributed estimation approaches is
straightforward. We propose the modied CF/DPF (MCF/DPF) to
handle such out of synchronization issues by implementing the mod-
ied fusion lter to run at a rate different from that of the local
lters. The modied fusion lter is based on a non-linear fusion
rule derived in the paper as an alternative to the Chong-Mori-Chang
track-fusion principle. The condition for achieving consensus be-
tween two successive iterations of the localized particle lter is re-
laxed, which enables the consensus step to converge without strict
time limitations. Our numerical simulations verify the efciency of
the proposed MCF/DPF in such intermittently connected networks.

The rest of the paper is organized as follows. Section 2 formu-
lates the problem and introduces both the centralized and CF/DPF
implementations. The modied fusion lter is discussed in Sec-
tion 3, while Section 4 presents the simulation results.

2. PROBLEM FORMULATION AND PARTICLE FILTER

The overall state-space model is given by

State Model: x(k)=f(x(k − 1)) + ξ(k) (1)

Observation Model:




z(1)(k)

...
z(N)(k)





︸ ︷︷ ︸
z(k)

=




g(1)(x(k))

...
g(N)(x(k))





︸ ︷︷ ︸
g(x(k))

+




ζ(1)(k)

...
ζ(N)(k)





︸ ︷︷ ︸
ζ(k)

(2)
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for a sensor network comprising of N nodes and observing a set of
nx state variables x = [X1, X2, . . . , Xnx ]

T . The global observa-
tion vector is z = [z(1)T , . . . ,z(N)T ]T with z(l)(k) denoting the
observation at node l, (1 ≤ l ≤ N ), at time instant k. Symbol T
denotes transposition and {ξ(·), ζ(·)} are, respectively, the global
non-Gaussian uncertainties in the process and observation models.

The optimal Bayesian ltering recursion for iteration k is

P (x(k)|z(1 :k−1)) = (3)
∫

P (x(k−1)|z(1 :k−1))f(x(k)|x(k−1))dx(k−1)

and P (x(k)|z(1 :k)) = P (z(k)|x(k))P (x(k)|z(1 :k−1))
P (z(k)|z(1 :k−1))

.(4)

The particle lter is based on the principle of sequential importance
sampling (SIS) [39], where the ltering distribution P (x(k)|z(1:k))
is represented by its samples (particles) {Xi(k)}Ns

i=1 derived from a
proposal distribution q(x(0 : k)|z(1 : k)) with normalized weights
Wi(k) = P (Xi(k)|z(1:k))

q(Xi(0:k)|z(1:k))
associated with the vector particles. The

particle lter implements the ltering recursions by propagating the
particles Xi(k) and associated weights Wi(k), (1 ≤ i ≤ Ns), as

Xi(k) ∼ q(Xi(k)|Xi(0 :k−1), z(1 :k)) (5)

Wi(k) ∝ Wi(k − 1)
P (z(k)|Xi(k))P (Xi(k)|Xi(k−1))

q(Xi(k)|Xi(0 :k−1), z(1 :k))
. (6)

2.1. Distributed Particle Filter

Our distributed implementation is based on the following model

x(k) = f(x(k − 1)) + ξ(k) (7)
z(l)(k) = g(l)(x(k)) + ζ(l)(k), (8)

for sensor nodes (1 ≤ l ≤ N). The entire state vector x(k) is
estimated by running one local lter at each node based only on its
local observation z(l)(1 : k). By introducing a fusion lter (one
per sensor node), the CF/DPF [21, 22] fuses the local ltering and
prediction distributions to derive the global posterior distribution

P
(
x(0 :k)|z(1 :k)

)
∝

∏N
l=1 P

(l)
(
x(k)|z(l)(1 :k)

)

∏N
l=1 P

(l)
(
x(k)|z(l)(1 :k−1)

) (9)

×P
(
x(0 :k)|z(1 :k−1)

)
,

using the fusion rule [7]. Here, P (l)(.) is the relevant local posterior
at node l. The k�’th iteration of the CF/DPF is based on the following
steps. The weighted particles {X(l,LF)

i (k−1),W (l,LF)
i (k−1)} for

the local lter and particles {X(l,FF)
i (k−1),W (l,FF)

i (k−1)} for the
fusion lter are available from the previous iteration at each node.
1. Local Filters: The local lters are direct implementation of
Eqs. (5)�–(6) computing {X(l,LF)

i (k),W (l,LF)
i (k)} from {X(l,LF)

i (k−
1),W (l,LF)

i (k−1)} and local observations z(l)(1 :k), followed by a
re-sampling step if degeneracy occurs. The proposal distribution for
the local lters is modeled as P (l)(x(k)|x(k−1)).
2. Local Statistics: Given {X(l,LF)

i (k),W (l,LF)
i (k)}, the local l-

ter at node l, (1 ≤ l ≤ N ), computes the minimum mean square
error estimates (MMSE) of the mean µ(l)(k) and error covariance
P (l)(k) of its local ltering distribution P (l)(x(k)|z(l)(1 : k)) as
well as the MMSE of the mean υ(l)(k) and error covariance R(l)(k)
of its local prediction distribution P (l)(x(k)|z(l)(1 :k−1)).

3. Consensus Step: The two product densities in the rst right hand
term in Eq. (9) are approximated [42] as

N∏

l=1

P (l)(x(k)|z(l)(1 :k))!
N∏

l=1

N(µ(l)(k),P (l)(k))∝N (µ(k),P (k))

N∏

l=1

P (l)(x(k)|z(l)(1 :k−1))!
N∏

l=1

N(υ(l)(k),R(l)(k))∝N(υ(k),R(k))

where N (·, ·) denotes a Gaussian distribution. The statistics of the
two product densities {µ(k),P (k)} and {υ(k),R(k)} are com-
puted by running four vector consensus algorithms [21, 22].
4. Global Estimates: The fusion lter estimates the global poste-
rior distribution P (x(0 : k)|z(1 : k)). Being a particle lter itself,
implementation of the fusion lter requires the proposal distribution
from which particles of the fusion lter are derived, i.e.,

X(l,FF)
i (k) ∼ q(x(k)|x(k−1),z(1 :k)). (10)

Please refer to [21, 22] for three different choices of the fusion lter�’s
proposal distribution. The weight update equation is given by

W (l,FF)
i (k)∝W (l,FF)

i (k−1) × (11)

N (X(l,FF)
i (k);µ(k),P (k))P (X(l,FF)

i (k)|X(l,FF)
i (k−1))

N (X(l,FF)
i (k);υ(k),R(k))q(x(k)|x(k−1),z(1 :k))

.

Steps (2)�–(4) describe the fusion lter at iteration k. For iteration
k+1, the time index k is incremented and Steps (1)�–(4) are repeated.

We note that approximating the two product terms in the con-
sensus step (Step 3 above) does not restrict the global posterior to
be Gaussian as can be seen in Eq. (9). The last term in (9) is de-
rived from the nonlinear state model and global posterior obtained
from the previous CF/DPF iteration. Similarly, the local posteriors
resulting from the localized particle lters are non-Gaussians by na-
ture allowing the CF/DPF to retain its ability to handle non-Gaussian
forcing and noise terms.

3. MODIFIED FUSION FILTER

In the CF/DPF, the local lters and the fusion lters can run out of
synchronization due to intermittent network connectivity. The lo-
cal lters are conned to their sensor node and unaffected by loss
of connectivity. The fusion lters, on the other hand, run consen-
sus algorithms. The convergence of these consensus algorithms is
delayed if the communication bandwidth is reduced. In this sec-
tion, we develop ways of dealing with such intermittent connectivity
issues. First, let us introduce the notation. We assume that the ob-
servations arrive at constant time intervals of ∆T . Each iteration of
the local lters is performed within this interval, which we will refer
to as the local lter�’s estimation interval. The duration (the fusion
lter�’s estimation interval) of the update cycle of the fusion lter is
denoted by Tc. Fig. 1 illustrates two scenarios dealing with differ-
ent fusion lter�’s estimation intervals. Fig. 1(a) is the ideal scenario
where Tc ≤ ∆T and the fusion lter�’s consensus step converges be-
fore the new iteration of the local lter. The timing diagram of the
local lter is shown in the bottom subplot of Fig. 1(a) and the timing
diagram of the fusion lter is shown in the top subplot of Fig. 1(a).
In such a scenario, the local and fusion lters stay synchronized.
Fig. 1(b) considers a more problematic scenario when Tc > ∆T .
Even with ideal connectivity, the fusion lter will continue to lag the
localized lters with no hope of it catching up. The bottom two tim-
ing diagrams corresponding to the local and fusion lters in Fig. 1(b)
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Fig. 1. Multirate implementations for the local and fusion lters: (a) (Tc ≤ ∆T ); (b) (Tc > ∆T ). In (b), the CF/DPF lag grows exponentially.

refer to this scenario with Tc = 2∆T . As illustrated, the lag between
the fusion and localized lters grows exponentially with time in this
scenario. An improvement to the fusion lter is suggested in the
top subplot of Fig. 1(b), where the modied fusion lter derives the
global posterior at every alternate (1, 3, 5, . . .) iteration of the local
lter by using the most recently available local ltering density of
the localized lters. This allows the fusion lter to catch up with the
localized lter even for cases Tc > ∆T . Such a modied fusion im-
plementation requires an updated fusion rule for the global posterior
density as fusion is not conducted at every local lter iteration. This
is considered next in the following discussion.

In our explanation, we use the notation that the fusion lter
takes up to m iterations of the local lters to converge. At iteration
k + m, this implies that node l, for (1 ≤ l ≤ N ), has a particle-
based approximation of the local ltering distributions P(l)(x(k +
m)|z(l)(1 : k + m)), while its fusion lter has a particle-based ap-
proximation of the global posterior distribution P (x(0 :k)|z(1 :k))
for iteration k. In the conventional fusion lter, the statistics of
P (l)(x(k+1)|z(l)(1 :k+1)), for (1 ≤ l ≤ N ), are used in the next
consensus step of the fusion lter which then computes the global
posterior P (x(0 : k + 1)|z(1 : k + 1)) based on Eq. (9). The mod-
ied fusion lter uses the most recent local ltering distributions
P (l)(x(k +m)|z(l)(1 :k +m)) according to Theorem 1.

Theorem 1. Conditioned on the state variables, assume that the
observations made at node l are independent of the observations
made at node j, (j &= l). The global posterior distribution for a
N–sensor network at iteration k+m is then given by

P (x(0 :k+m)|z(1 :k+m)) ∝
N∏

l=1

∏k+m
k′=k+1 P

(l)
(
x(k′)|z(l)(1 :k′)

)

∏k+m
k′=k+1 P

(l) (x(k′)|z(l)(1 :k′−1))
(12)

×
k+m∏

k′=k+1

P
(
x(k′)|x(k′−1)

)
× P (x(0 :k)|z(1 :k)) .

Proof. Theorem 1 is obtained using: (i) The Markovian property of
the state variables; (ii) Assuming that the local observations made at
two sensor nodes conditioned on the state variables are independent
of each other, and; (iii) Using the Bayes�’ rule. First, by applying the
Bayes�’ rule to Eq. (9), the posterior distribution at iteration k can be
represented as follows

P
(
x(0 :k)|z(1 :k)

)
∝P

(
z(k)|x(k)

)
P
(
x(0 :k)|z(1 :k−1)

)
(13)

Now, using the Markovian property of the state variables, and assum-
ing that the local observations made at two sensor nodes conditioned
on the state variables are independent of each other (13) becomes

P
(
x(0 :k)|z(1 :k)

)
∝
(

N∏

l=1

P (l)(z(l)(k)|x(k)
)
)

(14)

×P
(
x(k)|x(k−1)

)
P
(
x(0 :k−1)|z(1 :k−1)

)
.

At node l, for (1 ≤ l ≤ N ), using the Bayes�’ rule

P (l)
(
z(l)(k)|x(k)

)
=

P (l)(x(k)|z(l)(1 :k))

P (l) (x(k)|z(l)(1 :k−1))
(15)

×P (l)
(
z(l)(k)|z(l)(1 :k−1)

)
.

Next, we write the posterior density at iteration k+m, i.e.,

P (x(0 :k+m)|z(1 :k+m))∝P (x(0 :k+m)|z(1 :k+m−1))

×

∏N
l=1 P

(l)
(
x(k+m)|z(l)(1 :k+m)

)

∏N
l=1 P

(l) (x(k+m)|z(l)(1 :k+m−1))
. (16)

Then the rst term on the right hand side of (16) is factorized as

P (x(0 :k+m)|z(1 :k+m−1))=P (x(k+m)|x(k+m−1))

P (x(0 :k+m−1)|z(1 :k+m−1)) . (17)

As in Eq. (16), we continue to expand P (x(0 : k+m−1)|z(1 :
k+m−1)) (i.e., the posterior distribution at iteration k+m−1) all
the way back to iteration k+1 to prove Eq. (12).

In the consensus step, two average consensus algorithms compute

N∏

l=1

k+m∏

k′=k+1

P (l)
(
x(k′)|z(l)(1 :k′)

)
∝ (18)

N∏

l=1

N
(
µ(l)(k+1:k+m),P (l)(k+1:k+m)

)

and
N∏

l=1

k+m∏

k′=k+1

P (l)
(
x(k′)|z(l)(1 :k′−1)

)
∝ (19)

N∏

l=1

N
(
υ(l)(k+1:k+m),R(l)(k+1:k+m)

)
,
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Fig. 2. Robot trajectories estimated from the centralized, MCF/DPF,
and CF/DPF implementations in a 20-node network. Trajectories
from centralized and MCF/DPF overlap and are indistinguishable.

instead of computing
∏N

l=1P
(l)(x(k)|z(l)(1 :k)) and

∏N
l=1P

(l)(x(k)|
z(l)(1 :k−1)) as was the case for the conventional fusion lter. The
modied fusion lter starts with a set of particles X(MFF,l)

i (k),

W (MFF,l)
i (k) approximating P (x(0 : k)|z(1 : k)) and generates

updated particles X(MFF,l)
i (k+m),W (MFF,l)

i (k+m) for P (x(0 :
k+m)|z(1 :k+m)) using the following weight update equation

W (l,MFF)
i (k+m)∝W (l,MFF)

i (k)× (20)
∏k+m

k′=k+1 P
(l)

(
X(l,MFF)

i (k′)|X(l,MFF)
i (k′−1)

)

N
(
X(l,MFF)

i (k+m);υ(k+1:k+m),R(k+1:k+m)
) ,

which is obtained directly from (12). Note that the normal approxi-
mation in Eqs. (18)-(20) is similar to the one used in the conventional
fusion lter. Furthermore, we note that the modication requires
prediction of the particles from iteration k all the way to k+m to
evaluate the second term on the right hand side of (20).

4. EXPERIMENTAL RESULTS

In this paper, we consider a distributed mobile robot localization
problem [26, 40] based on angle-only measurements [39]. This is
a good benchmark since the underlying dynamics is nonlinear and
the state is unobservable to individual sensors, which justies the
need for some communication between them. The state variables of
the unicycle robot is dened as x = [X, Y, θ]T , where X and Y
are 2D coordinates of the robot while θ is its orientation. The linear
velocity and angular velocity are denoted by Ṽ (k) and Ω̃(k), respec-
tively. The nonlinear, time-invariant dynamical model for the robot
follows the following discrete-time unicycle model [40]

X(k+1)=X(k)+
Ṽ (k)

Ω̃(k)

(
sin

(
θ(k)+Ω̃(k)∆T

)
−sin

(
θ(k)

))
(21)

Y (k+1)=Y (k)+
Ṽ (k)

Ω̃(k)

(
cos

(
θ(k)+Ω̃(k)∆T

)
−cos

(
θ(k)

))
(22)

θ(k+1)=θ(k) + Ω̃(k)∆T + ξθ∆T, (23)

with ∆T the sampling time and ξθ the orientation noise term. Terms
Ω̃(k) = Ω(k) + ξΩ(k) and Ṽ (k) = V (k) + ξv(k), where {ξv, ξΩ}
are the noise terms in these control inputs. The design parameters
are: ∆T = 1 and mean velocity of 30 cm/s with a standard de-
viation of 5 cm/s. The random noises are Gaussian, i.e., ξv(k) ∼
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Fig. 3. RMS errors from Monte Carlo simulations for the central-
ized, CF/DPF (fusion lter�’s outputs from two randomly selected
nodes {11, 13} since CF/DPF does not converge), and MCF/DPF.

N (0.3, .05), ξΩ(k) ∼ N (0.08, .01) and ξθ ∼ N (0, .01). Measure-
ments at each node l in a 20-node network are the target�’s bearings

Z(l)(k) = atan
(
X(k) −X(l)

Y (k)− Y (l)

)
+ ζ(l)(k), (24)

where (X(l), Y (l)) are the coordinates of node l. Three particle
lter implementations are tested: (i) Centralized approach (bench-
mark); (ii) CF/DPF (since consensus is not reached, the fusion esti-
mates in the CF/DPF are different from one node to another. Results
from nodes ({11, 13}) are included), and; (iii) MCF/DPF. We con-
sider Ns = 20, 000 particles in the centralized implementation and
Ns = 1000 particles at each node for implementations (ii)-(iii) to
keep the total particles same in (i) to (iii). Fig. 2 plots one realiza-
tion of the sensor placement along with the estimated robot�’s tra-
jectories obtained from implementations (i) to (iii). In (ii)-(iii), the
fusion lters take up to two iterations of the localized particle lters.
The CF/DPF does not reach consensus, while the MF/DPF performs
consensus at alternate iterations of the local lters. Fig. 2 illustrates
that the estimates of the modied fusion lter are much closer to its
centralized counterpart. Fig. 3 shows the RMS error curves for the
target�’s position based on a Monte Carlo simulation of 100 runs. The
performance of the proposed MCF/DPF remains close to its central-
ized counterpart. In other nonlinear tracking scenarios with non-
Gaussian forcings that we tested, the MCF/DPF successfully han-
dled intermittence in network connectivity with performance close
to its centralized counterpart with no intermittance issues.

5. SUMMARY

The paper proposes a distributed estimation framework for intermit-
tently connected networks with nonlinear dynamics. To illustrate the
framework, a consensus-based distributed particle lter implementa-
tion, MCF/DPF, is implemented to cope with intermittent communi-
cation connectivity. At each node, the MCF/DPF runs two particle
lters: (a) The local lter is based only on the node�’s local observa-
tions and recursively derives the local estimates, and; (b) The modi-
ed fusion lter (similar in concept to the channel lter [41]) extracts
new information from the local estimates obtained from the neigh-
boring nodes. The MCF/DPF allows the modied fusion lter to run
at a rate different from that of the local lters, therefore, enabling
the consensus step to converge without strict time limitations. Future
work will consider multitarget tracking, which is likely to introduce
a multinominal posterior.
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