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ABSTRACT

We describe in this paper a novel distributed particle filter-

ing algorithm that performs blind equalization of frequency-

selective channels in a setup with a single transmitter and

multiple receivers. The algorithm employs parallel minimum

consensus iterations to determine some a posteriori probabil-

ity functions, providing equal approximations on all network

nodes in a finite, deterministic, network-dependent number of

steps. We verify via computer simulations that the new algo-

rithm exhibits a bit error rate (BER) performance similar to

that of the centralized particle-filter estimator with communi-

cation requirements milder than that of previous approaches,

as the new method drops the need to evaluate quantities via

average consensus.

Index Terms— Distributed Algorithms, Particle Filters,

Blind Equalization.

1. INTRODUCTION

Distributed estimation is currently a relevant research area

due to the plethora of new devices equipped with sensing,

computing, and communication capabilities. We consider in

this paper a scenario in which a single transmitter broadcasts

through frequency-selective channels a sequence of discrete-

valued symbols which are received by a network of remote

sensors. Instead of forwarding local observations to a remote

fusion center, we develop a method in which the different

nodes not only process their own observations independently,

but also cooperate with each other to compute the joint opti-

mal estimate of the transmitted symbols given all observations

in the network.

Previous distributed filtering algorithms mostly perform

linear estimation [1], [2], which is not ideally suited for

blind equalization of digital channels as the minimum BER

estimate of the transmitted data may be significantly dif-

ferent from the linear-mean-square error estimates provided

by linear adaptive or Kalman filters. This restriction can

be sidestepped by nonlinear techniques such as particle fil-

ters, which approximate the maximum a posteriori (MAP)

estimate.

The development of distributed particle filters has been

restrained, however, by the fact that, unless further approxi-

mations are made, all network nodes must agree on the same

set of particles and weights. To abide by this restriction, most

current methods [3],[4], broadcast messages across the net-

work, an undesirable feature in many scenarios with commu-

nication or power constraints.

In this paper we introduce a new consensus-based, dis-

tributed particle filtering algorithm. The algorithm employs

minimum consensus [5] to evaluate approximations to some

node-dependent probabilities across the receiver network,

dropping the need for broadcasts or to perform a random

number of average consensus iterations [6].

The remaining text is organized as follows: in Sec. 2 we

describe the problem setup, introducing in Sec. 3 a central-

ized particle filter approach to its solution. In Sec. 4, we

introduce consensus-based techniques for distributed parti-

cle filtering and present the new minimum-consensus-based

method, whose properties are discussed in Sec. 5 and perfor-

mance assessed in Sec. 6. Our conclusions are summarized in

Sec. 7.

2. PROBLEM SETUP

Denote by {bn} an independent, identically distributed (i.i.d.)

binary bit sequence and by {xn}, xn ∈ {±1}, the corre-

sponding differentially encoded symbols. We assume that the

observations yr,0:n , {yr,0, . . . , yr,n} at the r−th node of a

network of R receivers are obtained as the output of the ad-

ditive noise frequency-selective finite impulse response (FIR)

channel

yr,n = hT
r xn + vr,n , (1)

where hr ∈ R
L×1 is a vector with the (time-invariant) chan-

nel impulse response terms, xn , [xn . . . xn−L+1]
T

, and vr,n
represents an i.i.d. zero-mean Gaussian random process of

known variance σ2
r .

The unknown, random parameters hr, 1 ≤ r ≤ R, are

assumed to be independent for r 6= s, and distributed a priori

as hr ∼ NL(hr|0; I/ε2), where NL denotes an L−variate

Gaussian p.d.f., and ε is the model’s hyper-parameter.
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Under these hypotheses, we aim at developing a recursive

method for obtaining MAP estimates b̂n = argmaxbn p(bn|
y1:R,0:n), where y1:R,0:n , {y1,0:n . . . yR,0:n}.

3. CENTRALIZED SOLUTION VIA PARTICLE

FILTERS

Particle filters allow one to approximate the posterior proba-

bility mass function (p.m.f.) of the transmitted bits as

p(bn|y1:R,0:n) ≈
Q
∑

q=1

w(q)
n I

{

bn = b(q)n

}

, (2)

where I{·} denotes the indicator function, Q the num-

ber of particles b
(q)
n sampled from the importance func-

tion π(x
(q)
n |x(q)

0:n−1, y1:R,0:n), and w
(q)
n are the importance

weights. For simplicity, we employ the prior importance

function, so that π(x
(q)
n |x(q)

0:n−1, y1:R,0:n) , p(x
(q)
n |x(q)

n−1).
The resulting importance weights’ update expression is then

given by

w(q)
n ∝ w

(q)
n−1 p(y1:R,0:n|x(q)

0:n). (3)

From the a priori independence of the unknown parameters

for each receiver’s channel, it can be shown [7] that the quan-

tity on the right-hand side (r.h.s.) of (3) can be factored as

p(y1:R,0:n|x(q)
0:n) ∝

R
∏

r=1

p(yr,0:n|x(q)
0:n). (4)

Finally, under the assumptions of Sec. 2, one can verify after

algebraic manipulations [8] that

p(yr,0:n|x(q)
0:n) =

∫

RL

p(yr,0:n,hr|x(q)
0:n) dhr

= N
(

yr,n| ĥ(q)T
r,n−1x

(q)
n ; γ(q)

r,n

)

(5)

where ĥ
(q)T
r,n−1 and γ

(q)
r,n can be computed via the Kalman filter

recursions [8]

γ(q)
r,n , σ2

r + x(q)T
n Σ

(q)
r,n−1x

(q)
n , (6)

e(q)r,n , yr,n − ĥ
(q)T
r,n−1x

(q)
n , (7)

ĥ(q)
r,n = ĥ

(q)
r,n−1 +Σ

(q)
r,n−1x

(q)
n e(q)r,n/γ

(q)
r,n , (8)

Σ(q)
r,n = Σ

(q)
r,n−1 −Σ

(q)
r,n−1x

(q)
n x(q)T

n Σ
(q)
r,n−1/γ

(q)
r,n , (9)

with ĥ
(q)
r,−1 = 0 and Σ

(q)
r,−1 = Iε−2.

4. CONSENSUS-BASED ALGORITHMS

The weight update rule can be derived by replacing (4) into

(3), so that

w(q)
n ∝ w

(q)
n−1

R
∏

r=1

p(yr,0:n|x(q)
0:n), (10)

which can be rewritten as

w(q)
n ∝ w

(q)
n−1 exp(ρ

(q)
n ), (11)

where ρ
(q)
n ,

∑R
r=1 ρ

(q)
r,n and ρ

(q)
r,n , ln p(yr,0:n|x(q)

0:n). The

latter sum can be evaluated via Q parallel consensus averag-

ing iterations [9] as

ρ(q)n = lim
k→∞

ρ̃(k,q)r,n , ∀r (12)

where k is the consensus algorithm iteration index (indepen-

dent of n), ρ̃
(0,q)
r,n , Rρ

(q)
r,n, and

ρ̃(k,q)r,n =
∑

s∈N(r)∪r

ars ρ̃
(k−1,q)
s,n , (13)

where N(r) denotes the neighborhood of the node r, the set

of all nodes adjacent to r, and ars are positive weights such

that {A}rs , ars is an R × R primitive [10] doubly stochas-

tic matrix. Under these conditions, the iteration in (13) con-

verges to the desired sum.

Consensus averaging allows (10) to be evaluated without

the need of broadcasts or communications beyond the imme-

diate neighborhood of any node. However, in general, for any

finite k, ρ̃
(k,q)
r,n 6= ρ̃

(k,q)
s,n , r 6= s. As a result, direct application

of consensus averaging to evaluate (11) will result in diverse

importance weights for the same particle q at different nodes,

violating assumptions implicit in (2)-(3).

4.1. Minimum-Consensus-based Approach

To guarantee coherence in the particle sets across the net-

work nodes, some form of approximation is required. Ba-

sically, one must create a mechanism for determining ap-

proximate importance weights that are equal on all nodes

for a given particle q. Combined with synchronous sam-

pling/resampling [3], this is a sufficient condition to assure

coherence of the particle set.

In [6] and [7], equality of the importance weights was

determined, directly or not, via minimum/maximum consen-

sus [5] algorithms. Given node-dependent quantities µr, these

algorithms compute their minimum/maximum as µ̃
(k)
r

∣

∣

∣

k=D
,

where

µ̃(k)
r = min/max

s∈N(r)∪r

{

µ̃(k−1)
s

}

, (14)

D ≤ R is dependent on the network’s topology [5] and

µ̃
(0)
r , µr.

In [7], the approximate weights w̃
(q)
n are determined as

w̃(q)
n = w̃(q)

r,n ∝ Q
(

w̃
(q)
n−1 exp(ρ̃

(k,q)
n )

)

, (15)

for k = 0, 1, ... until w̃
(q)
r,n = w̃

(q)
s,n, ∀r 6= s, where Q(.) de-

notes a fixed quantizer, and ρ̃
(k,q)
n is obtained via (13). The re-

quired equality of w̃
(q)
r,n is verified by a method based on min-

imum consensus. In [6], alternatively, approximate weights
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are obtained directly as w̃
(q)
n = max

s

{

w̃
(q)
n−1 exp(ρ̃

(k,q)
s,n )

}

via

maximum consensus, for a fixed k.

We introduce here a new approach that, contrary to [6]

and [7], does not aim at approximating the product on the

r.h.s. of (4). Instead, it relies on the alternate approximation

p̃(y1:R,0:n|x(q)
0:n) ∝ min

r

(

p(yr,0:n|x(q)
0:n)

)

, (16)

which can be exactly evaluated via minimum consensus only.

The approximate importance weights are then determined as

w̃(q)
n ∝ w̃

(q)
n−1 p̃(y1:R,0:n|x(q)

0:n). (17)

5. ASYMPTOTIC PROPERTIES OF THE PROPOSED

APPROXIMATION

Applying the matrix inversion lemma [11] to (9), it follows

that

(Σ(q)
r,n)

−1 = (Σ
(q)
r,n−1)

−1 +
1

σ2
x(q)
n (x(q)

n )T , (18)

where x
(q)
n is a vector with binary entries equal to +1 or -1.

From (18), we note that Σ
(q)
r,n → 0 as n → ∞. From Eq.(6)

then, for n sufficiently large, we can make the approximation

γ
(q)
r,n ≈ σ2

r . Assuming additionally that σ2
r = σ2, ∀r, we

obtain that, asymptotically,

p(y1:R,0:n|x(q)
0:n) = NR

(

yn|ŷ(q)
n ; Iσ2

)

, (19)

where yn , [y1,n · · · yR,n]
T

and ŷ
(q)
n ,

[

ĥ
(q)T
1,n−1x

(q)
n · · ·

ĥ
(q)T
R,n−1x

(q)
n

]T

.

It follows from (19) that (16) is equivalent to approximat-

ing ‖yn−ŷ
(q)
n ‖22 by its maximum squared component, i.e., by

‖yn − ŷ
(q)
n ‖2

∞
. It can be verified [11] that ‖yn − ŷ

(q)
n ‖2

∞
≤

‖yn − ŷ
(q)
n ‖22, so that the resulting unnormalized weights are

overestimated.

The Kullback-Leibler [12] divergence between p(y1:R,0:n|
x
(q)
0:n) and p̃(y1:R,0:n|x(q)

0:n) is given by

DKL(p||p̃) = Ep(·)

[

ln

(

p(·)κ(σ
2, R)

p̃(·)

)]

=
1

2σ2
Ep(·)

[

‖yn − ŷ(q)
n ‖2

∞
− ‖yn − ŷ(q)

n ‖22
]

− (R− 1) ln(σ
√
2π) + lnκ(σ2, R),

(20)

where

κ(σ2, R) ,

∫

RR

min
r

N1

(

yr,n|ŷ(q)
r,n ;σ2

)

dyr,n. (21)

is the normalization term for p̃(.).
In Fig. 1, we display the behavior of DKL(p||p̃) as a func-

tion of σ2 for some values of R. To that aim, the expectation

in (20) was evaluated via Monte Carlo simulations in which

we generated 10.000 independent samples from p(.) accord-

ing to (19). To determine κ(σ2, R), in turn, we obtained nu-

merical estimates of (21) via Monte Carlo integration; the re-

sults obtained for 1 ≤ R ≤ 8 fitted the expression

κ(σ2, R) =






σR−12(3R−1)/2π−1/2(R/2)!, R even

σR−12(R−3)/2 (R+ 1)!

(R+1
2 )!

, R odd

(22)

As one may note, DKL(p||p̃) grows with R, so that the

approximation in (16) progressively degrades for larger net-

works.
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Fig. 1. DKL(p||p̃) as a function of σ2 and R.

6. SIMULATION RESULTS

The steady state performance of the proposed algorithm was

assessed via simulations consisting of 300 independent Monte

Carlo runs. In each realization, we computed the mean bit er-

ror rate (BER) as a function of EB/N0, transmitting a random

sequence of 300 i.i.d bits, with the first 150 bits discarded to

allow for convergence.

The simulated system has R = 4 receiving nodes and

the filters employed Q = 300 particles. All algorithms per-

form synchronized systematic resampling [3] whenever the

effective sample size estimated as
(

∑Q
q=1 w̃

(q)
n

)−1

falls be-

low Q/2.

The transmission channels hr have L = 3 coefficients,

and were obtained by sampling independently in each realiza-

tion and for each receiver from a Gaussian p.d.f. N (0; I) and

normalized so that ‖hr‖2 = 1. The noise variances were de-

termined as σ2 = ‖hr‖2N0/EB . The model hyper-parameter

was set to ε = 1. The average consensus weight matrix em-
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ployed was

A =
1

5
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.

In Fig. 2, we show the performance of the proposed al-

gorithm (∇). For comparison, we ran with the same setup

the optimal joint particle-filter-based algorithm that exactly

computes (4) (dash-dotted line). Fig. 2 also displays the per-

formance of isolated receivers (+) that do not cooperate and

that of a version of the algorithm proposed in [6] (◦) that em-

ploys 20 average-consensus steps to estimated the required

density product and does not discard any particle. In addi-

tion, we display the results for an alternative algorithm (△)

in which the minimization in (16) is replaced with maximiza-

tion. As one may verify, the proposed algorithm performed

0 2 4 6 8 10 12 14 16

10
−3

10
−2

10
−1

 

 

Joint
Proposed
Alternative
Üstebay  et al.

Isolated

Fig. 2. Mean bit error rate (BER) estimated in 300 indepen-

dent runs.

worse than the centralized particle filter estimator, but outper-

formed the isolated receiver by a great margin. One may also

note that the proposed algorithm performed similarly to the

algorithm of [6] at a much lower communication complexity,

since the proposed algorithm completely eliminates the need

for average consensus iterations. Finally, one may notice that

although the alternative approximation (△) might seem plau-

sible, it led to a performance similar to that of the isolated

receiver.

7. CONCLUSIONS

We introduced in this paper a new distributed particle filter-

ing algorithm based on minimum consensus. The algorithm

determines approximations to some required posterior prob-

ability functions that converge to the same value on all net-

work nodes within a finite number of consensus iterations.

Compared to previous approaches, the proposed method at-

tains similar performances with reduced, deterministic com-

munication and computational requirements. The method in-

troduced in this paper can be applied to any filtering prob-

lem with conditionally independent linear Gaussian observa-

tions and discrete-valued variables. In simulated Monte Carlo

experiments of a distributed blind equalization problem with

multiple remote receivers, the new algorithm exhibited a BER

performance similar to that of the optimal joint particle-filter

estimator.
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