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ABSTRACT

In this paper we address the Monte Carlo approximation of inte-

grals with respect to probability distributions in high-dimensional

spaces. In particular, we investigate the population Monte Carlo

(PMC) scheme, which is based on an iterative importance sampling

(IS) approach. Both IS and PMC suffer from the well known prob-

lem of degeneracy of the importance weights (IWs), which is closely

related to the curse-of-dimensionality, and limits their applicability

in large-scale practical problems. In this paper we investigate a novel

PMC scheme that consists in performing nonlinear transformations

of the IWs in order to smooth their variations and avoid degeneracy.

We apply the modified IS scheme to the well-known mixture-PMC

(MPMC) algorithm, which constructs the importance functions as

mixtures of kernels. We present numerical results that show how the

modified version of MPMC clearly outperforms the original scheme.

Index Terms— Importance sampling, population Monte Carlo,

mixture-PMC, degeneracy of importance weights

1. INTRODUCTION

Computational inference in high-dimensional spaces is a challeng-

ing problem with a broad scope. Various techniques based on the

Monte Carlo methodology [1] have been successfully applied to a

large variety of complex problems. In this work we concentrate on

the importance sampling (IS) approach and its iterative extension,

the population Monte Carlo (PMC) scheme [2].

IS allows to perform inference on a target probability density

function (pdf) of interest, based on samples generated from a pro-

posal pdf, or importance function, and their associated importance

weights (IWs). This method is very sensitive to the selection of the

proposal pdf and usually reveals a poor performance unless the di-

mension of the probability space is low [3]. The IWs present huge

variations, leading to a low number of “effective” samples [4], i.e.,

those with non-negligible IWs. As a consequence, an extremely

large number of samples is required in order to obtain a set of repre-

sentative ones, even in simple and low-dimensional problems [3, 5].

The PMC method iteratively performs IS, adapting the impor-

tance function according to the previous samples and weights, so that

it “approaches” the static target pdf along the iterations. As based on

IS, PMC is also prone to suffer from the degeneracy of the IWs, and

the availability of a low number of effective samples heavily hinders

the update of the proposal, leading to numerical problems.
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Nevertheless, the IS approach and PMC present a set of advan-

tages compared to the widely established Markov chain Monte Carlo

(MCMC) methodology [1], such as the possibility of developing par-

allel implementations, the sample independency and the inexistence

of a convergence period. Therefore, our work is directed towards

alleviating the inefficiency of IS in high-dimensional problems. In

[5], a simple modification of the classical IS scheme was proposed,

which consists in applying nonlinear transformations to the IWs in

order to reduce their variations and obtain a sufficient number of ef-

fective samples. Asymptotic convergence results were established

for the approximation error of integrals with respect to the random

measure constructed with the modified weights.

In this paper, we apply this novel IS scheme with transformed

IWs (TIWs) to the recently introduced mixture-PMC (MPMC) al-

gorithm [6], which constructs the sequence of importance functions

as mixtures of kernels. In [6], a set of rules are put forward for

selecting the parameters of the importance function that minimize

the Kullback-Leibler distance (KLD) between the target and the

proposal pdf at each iteration of the PMC scheme. However, this

method suffers from severe numerical problems unless applied to

signal spaces of low dimension, hence, the authors of [6] propose an

additional Rao-Blackwellization scheme to improve its robustness.

Here we introduce a MPMC algorithm that computes TIWs at

each iteration and demonstrate numerically (for a Gaussian mixture

target model) that this modification leads to a large performance im-

provement compared to the original method of [6]. The new algo-

rithm avoids numerical problems and leads to a smooth and stable

convergence toward the target pdf with high probability.

The rest of the paper is organized as follows. In Section 2, we

give a formal statement of the class of problems we address and

then review IS and the PMC method. In Section 3 we describe the

nonlinear IS and its application in the PMC framework. In Section 4,

we particularize the methodology to derive a MPMC algorithm with

TIWs and present numerical results. In Section 5 we discuss the

contributions of this paper and provide some concluding remarks.

2. BACKGROUND

2.1. Problem statement

Let θ = [θ1, . . . , θK ]⊤ be a vector of K unobserved real random

variables with pdf π(θ), termed the target pdf. The Monte Carlo

framework allows to approximate integrals with respect to π(θ) us-

ing a random grid ofM points, {θ(i)}Mi=1, in the space of the random

vector θ. However, the generation of useful samples that represent

the probability measure π(θ)dθ adequately when K is large is nor-

mally a very difficult task. The goal of this work is to devise and

assess an efficient computational inference (Monte Carlo) method-

ology, based on the IS principle, for the approximation of π(θ)dθ
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and its moments, i.e., integrals of the form (f, π) =
∫

f(θ)π(θ)dθ,

where f : RK → R is a real, integrable function of θ.

2.2. Importance sampling

The main application of statistical Monte Carlo methods is the ap-

proximation of (f, π) by means of empirical sums of the form

(f, π̂M ) =
1

M

M
∑

i=1

f(θ(i)), where π̂M (dθ) =
1

M

M
∑

i=1

δθ(i)(dθ),

δθ(i) (dθ) is the unit delta measure located at θ = θ(i), and

{θ(i)}Mi=1 is a random i.i.d. (independent and identically distributed)

sample drawn from π(θ). It is straightforward to analyze the con-

vergence of (f, π̂M ) towards (f, π) [1].
However, in many practical cases it is not possible to sample

from π(θ) directly. A common approach to overcome this difficulty

is to apply an IS procedure [1]. The key idea is to draw the samples

{θ(i)}Mi=1 from a (simpler) proposal pdf, or importance function,

q(θ), and then compute normalized IWs as

w(i) ∝ π(θ(i))/q(θ(i)), with

M
∑

i=1

w(i) = 1.

The integral (f, π) is then approximated by the weighted sum

(f, πM ) =
M
∑

i=1

w(i)f(θ(i)), where πM (dθ) =
M
∑

i=1

w(i)δθ(i)(dθ).

The efficiency of an IS algorithm depends heavily on the choice

of the proposal, q(θ). However, in order to ensure the asymp-

totic convergence of the approximation (f, πM ), when M is large

enough, it is sufficient to select q(θ) such that q(θ) > 0 whenever

π(θ) > 0, and guarantee that q(θ) has heavier tails than π(θ) [1].

2.3. Population Monte Carlo algorithm

The PMC method [2] is an iterative IS scheme that generates a se-

quence of proposal pdfs qℓ(θ), ℓ = 1, . . . , L, such that every new

proposal is “closer” to the target density π(θ) than the previous im-

portance function. Such scheme demands the ability to learn about

the target π(θ), given the set of samples and weights at the (ℓ−1)-th
iteration (ℓ ≥ 2), in order to produce the new proposal qℓ(θ) for the
ℓ-th iteration. The PMC algorithm is outlined in Table 1.

Table 1. Generic PMC algorithm

Iteration (ℓ = 1, . . . , L):

1. Select a proposal pdf qℓ(θ).

2. Draw a collection of M i.i.d. samples {θ(i)
ℓ }Mi=1 from qℓ(θ).

3. Compute normalized IWs w
(i)
ℓ ∝ π(θ

(i)
ℓ )/qℓ(θ

(i)
ℓ ), i =

1, . . . ,M.

When the dimension K is large, the probability of generating

representative samples from qℓ(θ) is very low, unless the proposal

fits well the target pdf, leading to extreme variations of the normal-

ized IWs. Also, the so called effective sample size (ESS), approx-

imated as Meff

ℓ = [
∑M

i=1(w
(i)
ℓ )2]−1, and its normalized version

(NESS) Mneff

ℓ = Meff

ℓ /M , take very low values, leading to se-

vere numerical problems [2, 5].

3. NONLINEAR POPULATIONMONTE CARLO

In this section we describe the nonlinear IS method, in which the

IWs undergo a nonlinear transformation. Then, we briefly discuss

the use of a specific type of transformation and, finally, introduce

the general PMC algorithm with TIWs.

3.1. Nonlinear IS

In [5] a modification of the standard IS approach was introduced,

in which the TIW w̄(i) associated to a sample θ(i) is computed as

a nonlinear transformation of the standard unnormalized IW w(i)∗.

To be specific, one chooses a transformation function ϕ : (R+)M ×
{1, . . . ,M} → R

+ and then computes the TIWs as

w̄(i) ∝ ϕM (w(i)∗), i = 1, . . . ,M,

where ϕM (w(i)∗) is shorthand for ϕ({w(j)∗, j = 1, . . . ,M}, i).
The TIWs are normalized to yield

∑M

i=1 w̄
(i) = 1. We may obtain

an approximation of (f, π) based on the set of TIWs as

(f, π̄M ) =

M
∑

i=1

w̄(i)f(θ(i)), where π̄M (dθ) =

M
∑

i=1

w̄(i)δθ(i) (dθ).

Some basic results for the asymptotic convergence of (f, π̄M )
towards (f, π) can also be found in [5].

3.2. Clipping transformation

The nonlinearity ϕM may be constructed in multiple ways. In this

paper we only investigate a “clipping” transformation. Consider

a permutation i1, . . . , iM of the indices in {1, ...,M} such that

w(i1)∗ ≥ . . . ≥ w(iM )∗ and choose an integer 1 < MT < M . The

unnormalized TIWs w̄(i)∗ are computed from the IWs w(i)∗ as

w̄(i)∗ = ϕM (w(i)∗) = min(w(i)∗, w(iMT
)∗), i = 1, . . . ,M,

where the threshold value w(iMT
)∗ corresponds to the MT -th high-

est IW. This transformation leads to flat TIWs in the region of inter-

est of θ, and guarantees a baseline ESS of MT .

3.3. Nonlinear PMC

The nonlinear IS approach may be directly extended to the iterative

PMC scheme. Thus, a nonlinear transformation ϕM
ℓ is applied to the

standard IWs at each iteration ℓ. The generic nonlinear PMC algo-

rithm is outlined in Table 2. An arbitrary proposal q1(θ) is assumed

for the first iteration of the algorithm.

Table 2. Generic nonlinear PMC algorithm

Iteration (ℓ = 1, . . . , L):

1. Given a set of samples and TIWs at iteration ℓ − 1,

{θ(i)
ℓ−1, w̄

(i)
ℓ−1}Mi=1, select a proposal pdf qℓ(θ) (ℓ ≥ 2).

2. Draw a collection of M i.i.d. samples {θ(i)
ℓ }Mi=1 from qℓ(θ).

3. For i = 1, . . . ,M , compute unnormalized IWs w
(i)∗
ℓ ∝

π(θ
(i)
ℓ )/qℓ(θ

(i)
ℓ ).

4. For i = 1, . . . ,M , compute TIWs w̄
(i)∗
ℓ = ϕM

ℓ (w
(i)∗
ℓ ) and

normalize them w̄
(i)
ℓ = w̄

(i)∗
ℓ /

∑M

j=1 w̄
(j)∗
ℓ .
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This modification of the algorithm mitigates the sensitivity of

the conventional IS to the selection of the importance function. The

normalized TIWs present a lower variance than the standard IWs,

increasing the ESS and allowing for a more robust proposal update.

4. EXAMPLE: NONLINEARMIXTURE-PMC

In this section we demonstrate how the computation of TIWs can

dramatically improve the performance of conventional PMC algo-

rithms. In particular, we describe the recently proposed mixture-

PMC (MPMC) method of [6], explain how to enhance it using non-

linear IS and finally show comparative computer simulation results.

4.1. Nonlinear mixture-PMC algorithm

We apply the general nonlinear PMC technique of Section 3.3 to

extend the MPMC algorithm [6]. The latter is based on constructing

the sequence of proposal pdfs as mixtures of kernels of the form

qℓ (θ) =
D
∑

d=1

αℓ,dqℓ,d(θ;βℓ,d), (1)

where the mixture weights αℓ,d and the kernel parameters βℓ,d of

each component are adapted along the iterations in order to minimize

the KLD between the target and the proposal pdf [7].

The MPMC update mechanism is similar to the EM algorithm

[7] with the E-step replaced by IS computations, and is outlined in

Table 3. In [6] an additional Rao-Blackwellization (RB) scheme is

employed, in order to mitigate the numerical accuracy problems that

arise when carrying out computations in high dimensional spaces.

The plain and RB schemes only differ in step 3.

Table 3. Original mixture-PMC algorithm [6]

Iteration (ℓ = 1, . . . , L):

1. Generate a sample {θ(i)
ℓ }Mi=1 from the current mixture pro-

posal qℓ(θ) in Eq. (1).

2. For i = 1, . . . ,M , compute normalized IWs w
(i)
ℓ ∝ w

(i)∗
ℓ =

π(θ
(i)
ℓ )/qℓ(θ

(i)
ℓ ) and normalized mixture posterior probabil-

ities ρ
(i)
ℓ,d, which satisfy

∑D

d=1 ρ
(i)
ℓ,d = 1, as

ρ
(i)∗
ℓ,d ∝ αℓ,dqℓ,d(θ

(i)
ℓ ;βℓ,d), ρ

(i)
ℓ,d = ρ

(i)∗
ℓ,d /

D
∑

k=1

ρ
(i)∗
ℓ,k .

3. Update the weights and the parameters of each component as

αℓ+1,d =
M
∑

i=1

w
(i)
ℓ ξ

(i)
ℓ,d and

βℓ+1,d = argmax
βℓ,d

[

M
∑

i=1

w
(i)
ℓ ξ

(i)
ℓ,d log qℓ,d(θ

(i)
ℓ ;βℓ,d)

]

.

Let Z
(i)
ℓ ∈ {1, . . . ,M} be the random index that identifies

from which kernel the sample θ
(i)
ℓ has been drawn in step 1.

In the plain MPMC scheme, ξ
(i)
ℓ,d = 1{Z(i)

ℓ = d}, while in
the RB-MPMC scheme ξ

(i)
ℓ,d = ρ

(i)
ℓ,d.

A nonlinear MPMC algorithm is easily obtained by addition-

ally computing TIWs in step 2, i.e., w̄
(i)∗
ℓ = ϕM

ℓ (w
(i)∗
ℓ ), w̄

(i)
ℓ =

w̄
(i)∗
ℓ /

∑M

j=1 w̄
(j)∗
ℓ and replacing w

(i)
ℓ by w̄

(i)
ℓ in step 3.

4.2. Gaussian mixture importance function

Following [6], assume that the proposal pdf at iteration ℓ is a mixture

of Gaussian kernels of the form

qℓ(θ) =
D
∑

d=1

αℓ,dN (θ;µℓ,d,Σℓ,d),

where µℓ,d and Σℓ,d are the mean vector and the covariance matrix

of each component, respectively (i.e., βℓ,d = {µℓ,d,Σℓ,d}). The

MPMC algorithm provides the update rules for the weights and pa-

rameters of each component in the Gaussian case as

αℓ+1,d =
M
∑

i=1

w
(i)
ℓ ξ

(i)
ℓ,d, µℓ+1,d =

∑M

i=1 w
(i)
ℓ ξ

(i)
ℓ,dθ

(i)
ℓ

αℓ+1,d
and

Σℓ+1,d =

∑M

i=1 w
(i)
ℓ ξ

(i)
ℓ,d

(

θ
(i)
ℓ − µℓ+1,d

)(

θ
(i)
ℓ − µℓ+1,d

)⊤

αℓ+1,d
,

where the ξ
(i)
ℓ,d’s are as in step 3 of Table 3. In the nonlinear MPMC

algorithm we compute αℓ+1,d, µℓ+1,d and Σℓ+1,d in the same way

but replacing the IWs w
(i)
ℓ by TIWs w̄

(i)
ℓ , i = 1, . . . ,M .

4.3. Simulation results

We present computer simulation results to compare the original and

nonlinear MPMC algorithms for a target density consisting of a

Gaussian mixture in a 10-dimensional space. In particular, let

π(θ) = 0.35N (θ;−2110, 0.5I10) + 0.4N (θ; 0.5110, 0.25I10)

+ 0.25N (θ; 2110, 0.5I10),

where 110 = [1, . . . , 1]⊤ and I10 is the 10× 10 identity matrix. For

the nonlinear MPMC method, we use the clipping transformation

of Section 3.2 in order to compute the TIWs and set MT =
√
M

(to guarantee that limM→∞ MT /M = 0 and ensure the asymptotic

convergence of the nonlinear IS method, see [5]).

4.3.1. IS vs nonlinear IS

If we restrict our attention to the first iteration of the PMC schemes,

then we can carry out a comparison of the standard IS method (with

conventional IWs) and the nonlinear IS technique (with TIWs). We

consider an importance function given by the 10-dimensional Gaus-

sian pdf q(θ) = N (θ; 010, 10I10), where 010 = [0, . . . , 0]⊤, which

corresponds to a vague prior knowledge. Both the marginal target

and proposal are represented in Fig. 1 (left).

We compute an approximation of the mean of π(θ), i.e., θ̂ =
∫

θπ(θ)dθ, based on a set ofM samples {θ(i)}Mi=1 from q(θ), with

standard IWs as θ̂
M

=
∑M

i=1 w
(i)θ(i) and with TIWs as θ̄

M
=

∑M

i=1 w̄
(i)θ(i). In Fig. 1 (central) we depict the approximation error

obtained by standard IS (‖θ̂−θ̂
M‖2) and nonlinear IS (‖θ̂−θ̄

M‖2),
as a function of the number of samples M , averaged over 104 in-

dependent simulation runs. The exact Monte Carlo error (approx-

imating θ̂ with samples generated from π(θ)) is also depicted for

comparison. It can be clearly observed that the approximation error

obtained with nonlinear IS is far below the one obtained with stan-

dard IS. Thus, the number of samples needed with nonlinear IS to

obtain a given approximation error is much lesser. Correspondingly,

Fig. 1 (right) shows that the average ESS obtained with standard IS

increases more slowly than that of nonlinear IS.
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Fig. 1. Performance of standard IS vs nonlinear IS. Marginal target and marginal proposal pdf (left). Average approximation error (central)

and ESS (right) vs M with standard IS, nonlinear IS and exact Monte Carlo sampling (labeled as MC).
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Fig. 2. Performance of nonlinear RB-MPMC. Final KLD vs final NESS obtained at each simulation run with the nonlinear RB-MPMC (left).

The obtained outcomes can be classified into three groups according to the final KLD, the threshold values are represented in solid red lines.

Evolution of the KLD (central) and NESS (right) along the iterations with the nonlinear RB-MPMC in each of the three groups.

4.3.2. MPMC vs nonlinear MPMC

We have performed 104 independent simulation runs of the follow-

ing algorithms: MPMC, RB-MPMC, nonlinear MPMC and nonlin-

ear RB-MPMC. In all the simulations, we considered an initial pro-

posal pdf q1(θ) composed of D = 5 equally weighted Gaussian

components with covariance matrix 10I10 and random mean vec-

tors. The number of iterations has been set to L = 20 and the num-

ber of samples per iteration to M = 5000. At each iteration of all

PMC schemes we compute an approximation of the KLD between

the target and the ℓ-th proposal by Monte Carlo simulation.

Fig. 2 (left) depicts the final KLD in logarithmic scale versus

the final NESS obtained at each simulation run of the nonlinear RB-

MPMC, together with the corresponding histograms. We observe

that most of the simulation runs end up with a low KLD (below

10−1) and a NESS close to 1. The outcomes of this type correspond

to exact matching of the final proposal to the target pdf and are clas-

sified into Group 1. Outcomes with a final KLD between 10−1 and

100.5 belong to Group 2 and correspond to solutions in which some

of the modes are grouped into one. The outcomes with a final KLD

above 100.5 belong to Group 3 and correspond to solutions where

some of the modes are ignored. These threshold values are also rep-

resented in Fig. 2 (left) in solid red line. Additionally, we define

Group 4 containing simulation runs which ended with non-proper

solutions or numerical errors. Fig. 2 (central and right plots) shows

the evolution along the iterations of the average KLD and NESS,

respectively, of the outcomes belonging to Groups 1, 2 and 3.

In Table 4 the percentage of results obtained in each of these

groups, for each of the tested algorithms are shown. We observe that

the nonlinear (NL)MPMC schemes (both the plain and RB versions)

clearly outperform the original MPMC, which obtains outcomes in

Group 4 in most of the cases. The nonlinear RB-MPMC obtains

≈ 70% of outcomes in Group 1 and presents no numerical problems.

Table 4. Percentage of simulation runs belonging to each group.

Group 1 Group 2 Group 3 Group 4

MPMC 0 % 0 % 1 % 99 %

RB-MPMC 0 % 0.07 % 4.34 % 95.59 %

NL MPMC 14.65 % 45.51 % 34.73 % 5.11 %

NL RB-MPMC 69.96 % 14.64 % 15.40 % 0 %

5. SUMMARY OF CONTRIBUTIONS

We have investigated the combination of nonlinear IS and PMC

schemes, termed nonlinear PMC and originally proposed in [5].

While in [5] the proposal pdf’s were assumed to be simple Gaus-

sians and the method was applied only to low-dimensional problems

(where weight degeneracy was due to the need to evaluate very

narrow likelihood functions), in this paper we have applied the

methodology: (a) to enhance the MPMC algorithm of [6], where the

proposal densities are mixtures of kernels built by way of a sophis-

ticated method that involves the minimization of a KLD, and (b) to

solve a computational inference problem in a higher-dimensional

space (where weight degeneracy is due to the curse of dimension-

ality). We have shown, through computer simulations, that the

resulting nonlinear MPMC algorithms drastically outperform their

conventional MPMC counterparts, in terms of both estimation accu-

racy and robustness to numerical precision issues.
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