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ABSTRACT

We develop a sequential estimation methodology for a class of non-

linear, non-Gaussian state space models in which the observation

process is intractable to express in closed form, but trivial to simu-

late. In addition we consider models in which the latent state vector

and the observation vector are very high dimensional. To overcome

these two difficulties we propose the class of Sequential Markov

chain Monte Carlo (SMCMC) algorithms in which we incorporate

a component of Approximate Bayesian Computation (ABC). In do-

ing so we tackle both the curse of dimensionality via the SMCMC

and the intractability of the likelihood via the ABC component. We

demonstrate how the proposed algorithm outperforms alternative ap-

proaches in two challenging state space model examples.

Index Terms— Bayesian filtering, intractable likelihood, MCMC,

approximate Bayesian computation.

1. INTRODUCTION

In many applications, we are interested in estimating a signal from

a sequence of noisy observations. This problem can generally be

stated in a state space form as follows. A transition equation de-

scribes the prior distribution, fk(xk|xk−1), of a hidden Markov

process {xk; k ∈ N}, xk ∈ R
nx and an observation equation de-

scribes the likelihood, gk(yk|xk), of the observations {yk; k ∈ N},

yk ∈ R
ny . This hidden Markov Model (HMM) has been applied

in a wide range of disciplines, e.g. finance [1], digital communica-

tion [2], tracking [3] etc. The diversity of the applications clearly

shows the flexibility of such a model structure. Within a Bayesian

framework, all relevant information about xk given observations up

to and including time k can be obtained from the filtering distribution

p(xk|y0:k).
Except in a few special cases, including linear and Gaussian state

space models (Kalman filter) and hidden finite-state space Markov

chains, it is impossible to evaluate this filtering distribution analy-

tically. Sequential Monte Carlo (SMC) approaches have become

a powerful methodology to cope with non-linear and non-Gaussian

problems [4].These methods, also known as particle filters (PF), ex-

ploit numerical integration techniques for approximating the filtering

probability density function of inherently nonlinear non-Gaussian

systems. Using these methods, the obtained estimates of sequences

of functional w.r.t. to the filtering distribution can be set arbitrarily

close to the optimal solution at the expense of computational com-

plexity [5].

However, Monte carlo methods require the density gk(yk|xk)
to be available point-wise, which may not be the case in some appli-

cations. The approximate Bayesian computation (ABC) technique

has become a popular scheme to tackle this problem, see discus-

sion in [6] and examples in [7]. Recently, a sequential Monte Carlo

method targeting an ABC approximation of the filtering distribution

in general non-linear and non-Gaussian HMM has been proposed

in [8]. Nevertheless, due to their sampling mechanization, SMC

methods tend to be inefficient when applied to high-dimensional

problems in which the observation and state vector is high dimen-

sional. Markov chain Monte Carlo (MCMC) methods are gener-

ally more effective than PFs in high-dimensional spaces when nx

and ny are large for a given time k. Their traditional formulation,

however, allows sampling from probability distributions in a non-

sequential fashion. Recently, sequential MCMC schemes were pro-

posed by [9–14]. These approaches are distinct from the Resample-

Move scheme [15] in particle filters where the MCMC algorithm is

used to rejuvenate degenerate samples following importance sam-

pling resampling. These methods [9–13] use neither resampling nor

importance sampling.

Utilising recent advances in “likelihood-free” inference as well

as in Monte-Carlo filtering techniques, we propose a novel filtering

approach based on MCMC that sequentially estimates an ABC ap-

proximation of the posterior distribution of interest.

In Section 2, the approximate bayesian computation (ABC)

method is desribed as well as the recent derivation of this framework

for filtering using the sequential Monte-Carlo methodology. Section

3 presents firstly a brief review of the sequential MCMC which

represents an alternative to the classical particle filter. Then, the

proposed SMCMC-ABC is described. In Section 4, performances of

the proposed algorithm are illustrated through numerical simulations

with different models. Finally, conclusions are given in Section 5.

2. APPROXIMATE BAYESIAN COMPUTATION METHOD

2.1. Introduction

The Approximate Bayesian Computation (ABC) method, originally

proposed in [16], is a class of algorithmic methods in Bayesian in-

ference using statistical summaries and computer simulations. ABC

algorithms have become popular in inverse problems where point-

wise evaluation of the likelihood function g(y|x) is computationally

prohibitive or intractable. The resulting approximation of the poste-

rior distribution is

pǫ(x|y) ∝

∫

R
ny

Kǫ(y − u)g(u|x)f(x)du (1)

where u is an auxiliary variable on the same space as the observed

data y. The function Kǫ(·) is a smoothing kernel with scale pa-

rameter ǫ. This approximation improves as ǫ decreases and exactly

recovers the target posterior distribution as ǫ → 0. In practice, the

function Kǫ(y−u) is expressed through low-dimensional vectors of

summary statistics, Λ(·), such that this kernel weights the intractable

posterior through Eq. (1) with high values when Λ(u) ≈ Λ(y).
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2.2. ABC for Filtering

In [8], the authors have proposed an ABC method for filtering in

HMMs. They have investigated the theoretical and empirical bias as

well as demonstrated the algorithm in real-case study. The authors

propose a sequential Monte Carlo (SMC) algorithm to sample from

the following target density at time k :

pǫ(x0:k,u0:k|y0:k) ∝

k∏

n=1

Kn,ǫ(yn − un)gn(un|xn)fn(xn|xn−1)

∝ Kk,ǫ(yk − uk)gk(uk|xk)fk(xk|xk−1)

×pǫ(x0:k−1,u0:k−1|y0:k−1) (2)

The ABC approximation of the posterior distribution proposed in

this paper is thus given by :

pǫ(x0:k|y0:k) ∝
k∏

n=1

b̃n,ǫ(yn;xn)fn(xn|xn−1) (3)

where b̃n,ǫ(yn;xn) =
∫
R
ny Kn,ǫ(yn − un)gn(un|xn)dun. We

can clearly see with this formulation that the ABC approximation of

the posterior in Eq. (3) tends to the true posterior pǫ(x0:k|y0:k), ∀k,

as ǫ → 0. The SMC-ABC algorithm proposed in [8] is summarized

in Algorithm 1.

Algorithm 1 SMC-ABC Algorithm [8]

1: Initialize particle and importance weights {x
(j)
−1; w̃

(j)
−1}

Np

j=1

2: for k = 1, . . . , T do

3: for j = 1, . . . , Np do

4: Propose {x
(j)
k } ∼ fk(xk|x

(j)
k−1)

5: Propose {u
(j)
k } ∼ gk(uk|x

(j)
k )

6: Compute weights w
(j)
k = Kk,ǫ(yk − u

(j)
k )w̃

(j)
k−1

7: end for

8: Normalization of the weights w̃
(j)
k = w

(j)
k

[∑Np

i=1 w
(j)
k

]−1

9: if Neff < η then Resample particles

10: end for

2.3. Contribution

Application of ABC methods in an SMC context, involves at each

iteration replacing evaluation of the intractable likelihood with com-

parison between the true observation vector yk and a model simu-

lated observation vector uk. Typically, if the dimension of yk and

xk are not too large, then there is a reasonable chance of match-

ing uk for a given ABC tolerance ǫ. However, when the dimen-

sion of the observation or state vector increases, this probability de-

creases resulting in particle degeneracy, high variance in the incre-

mental weights and consequently one is forced to either introduce

additional bias by increasing the comparative ABC tolerance ǫ or

increasing computational complexity by using more particles. Our

main contribution involves the design of a Sequential MCMC-ABC

algorithm (SMCMC-ABC) that circumvents these problems by al-

lowing greater flexibility in the mutation stage of the particles, e.g.

the ability to utilize block-wise Metropolis-Hastings within Gibbs

rejection steps to efficiently explore the support of marginal distri-

butions of the high dimensional state vector. Consequently, this pro-

posed SMCMC-ABC can achieve a significant gain compared to this

existing SMC-ABC algorithm.

3. SMCMC-ABC ALGORITHM

3.1. Brief review of MCMC based Particle algorithm

As detailed in [17], the sequential MCMC (SMCMC) is a power-

ful sequential methodology for filtering that targets the general joint

posterior distribution of xk and xk−1:

p(xk,xk−1|y0:k) ∝ gk(yk|xk)fk(xk|xk−1)p(xk−1|y0:k−1) (4)

A MCMC procedure is used to make inference from this complex

distribution, i.e. Eq. (4) is the target distribution. Since we do

not have a closed form representation of the posterior distribution

p(xk−1|y0:k−1) at time k − 1, this latter will be approximated with

an empirical distribution based on the current particle set

p(xk−1|y0:k−1) ≈
1

Np

Np∑

j=1

δ(xk−1 − x
(j)
k−1) (5)

where Np is the number of particles and (j) the particle index. Then,

by plugging this particle approximation into Eq. (4),

p(xk,xk−1|y0:k) ≈
1

Np

gk(yk|xk)

Np∑

j=1

fk(xk|x
(j)
k−1)δ(xk−1−x

(j)
k−1)

Then, having made many joint draws from Eq. (4) using an

appropriate MCMC scheme, the converged MCMC output for vari-

able xk can be extracted to give an updated marginalized particle

approximation to p(xk|y0:k). In this way, sequential inference can

be achieved. It should be noted that several sampling strategies

in the refinement step can be done in order to improve the algo-

rithm. In particular, if the state of interest is multivariate, and nx is

large for each xk then xk can be divided into P sub-blocks, xk =
[xk,Ω1

, . . . ,xk,ΩP
]. Then each sub-block can be updated either via

a random scan or a deterministic scan using a series of MH-within-

Gibbs steps.

More precisely, at the mth MCMC iteration, the procedure, to

obtain samples from p(xk,xk−1|y0:k), involves a joint Metropolis-

Hastings (MH) proposal step where both xk and xk−1 are updated

jointly, as well as block refinement Metropolis-within-Gibbs steps

where the blocks of xk are updated individually. This algorithm,

summarized in Algorithm 2, will be denoted by SMCMC.

Algorithm 2 SMCMC

1: Initialize particle set {x
(j)
−1}

Np

j=1

2: for k = 1, . . . , T do

3: for m = 1, . . . , NMCMC do

4: Joint Draw

5: Propose {x∗
k,x

∗
k−1} ∼ q1(xk,xk−1|x

m−1
k ,xm−1

k−1 )
6: Compute the MH acceptance probability ρ1 =

min

(
1,

p(x∗
k,x∗

k−1
|y0:k)

q1(x
∗
k
,x∗

k−1
|xm−1

k
,x

m−1

k−1
)

q1(x
m−1

k
,x

m−1

k−1
|x∗

k,x∗
k−1

)

p(xm−1

k
,x

m−1

k−1
|y0:k)

)

7: Accept {xm
k ,xm

k−1} = {x∗
k,x

∗
k−1} with probability ρ1

8: Block Refinement

9: Randomly divide xk into P blocks {Ωp}
P
p=1

10: for p = 1, . . . , P do

11: Propose {x∗
k,Ωp

} ∼ q(xk,Ωp |x
m
k,\Ωp

,xm
k−1)

12: Compute the MH acceptance probability ρp = min(
1,

p(x∗
k,Ωp

|xm
k,\Ωp

,xm
k−1

,y0:k)

q(x∗
k,Ωp

|xm
k,\Ωp

,xm
k−1

)

q(xm
k,Ωp

|xm
k,\Ωp

,xm
k−1

)

p(xm
k,Ωp

|xm
k,\Ωp

,xm
k−1

,y0:k)

)

13: Accept {xm
k } = {x∗

k} with probability ρp
14: end for

15: After a burn in period of Nburn , keep every Nthin MCMC

output x
(j)
k = xm

k as the new particle set for approximating

p(xk|y0:k), i.e. p̂(xk|y0:k) =
1

Np

∑Np

j=1 δ(xk − x
(j)
k )

16: end for

17: end for
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3.2. Derivation of the SMCMC-ABC

It is straightforward to show that the ABC approximation of the pos-

terior given in Eq. (2) admits the following marginal :

pǫ(xk,xk−1,uk|y0:k) ∝ Kk,ǫ(yk − uk)gk(uk|xk)fk(xk|xk−1)

×pǫ(xk−1|y0:k−1) (8)

As in the sequential MCMC described in Section 3.1, we pro-

pose to use a set of unweighted particles to represent the density

pǫ(xk−1|y0:k−1):

pǫ(xk−1|y0:k−1) ≈
1

Np

Np∑

j=1

δ(xk−1 − x
(j)
k−1) (9)

where Np is the number of particles and (j) the particle index. Then,

by plugging this particle approximation into Eq. (8), a MCMC pro-

cedure can be employed to draw samples from :

pǫ(xk,xk−1,uk|y0:k) ∝ Kk,ǫ(yk − uk)gk(uk|xk) (10)

×

Np∑

j=1

fk(xk|x
(j)
k−1)δ(xk−1 − x

(j)
k−1)

A MCMC procedure can be designed to sequentially target this

ABC approximation of posterior distribution pǫ(xk,xk−1,uk|y0:k).
In this SMCMC-ABC, the joint draw will involve a Metropolis-

Hastings proposal step where xk, xk−1 and uk are jointly updated.

The refinement step will be discussed in the next section.

3.3. Discussion on the Block Refinement Step

The use of proposals for sub-blocks of the state vector in the origi-

nal SMCMC algorithm was shown to provide a significant impact on

the accuracy of the resulting particle estimate of the filtering distri-

bution [18]. The idea involves the partitioning of the state vector xk

into P blocks and then the successive sampling of updates for each

block via a Metropolis-Hasting within Gibbs rejection mechanism.

When one further incorporates the model component of auxiliary

variables associated to synthetic observations, due to the ABC struc-

ture, the ability to incorporate blockwise updates shows even greater

performance gains compared to standard SMC-ABC solutions.

More precisely, in the ABC framework the auxiliary random

vector uk has to be sampled from the likelihood gk(·|xk) in order to

avoid the computation of the likelihood which is intractable. Con-

sequently, if the proposal used in the block refinement step of the

SMCMC-ABC only moves a sub-block of the state vector, denoted

xk,Ωp , then the auxiliary variable uk must also be sampled. How-

ever, in some cases, it will not be necessary to sample all the ele-

ments of this auxiliary variable uk. Reducing the dimension of the

state to sample in this refinement step shows marked improvement

in the final estimation accuracy. The likelihood density involved in

the target distribution, Eq. (11), can be written as :

gk(uk|xk) = gk(uk,Γp |uk,\Γp
,xk,Ωp ,xk,\Ωp

)

×gk(uk,\Γp
|xk,Ωp ,xk,\Ωp

) (11)

As a consequence, if we want to propose a move for the p-th block

xk,Ωp , the best strategy is to jointly sample uk,Γp in which Γp de-

notes the smallest subset of uk such that the conditions 1 and either

the condition 2 or 3 are satisfied :

Cond. 1: uk,Γp can be sampled from gk(uk,Γp |uk,\Γp
,xk,Ωp ,xk,\Ωp

)
Cond. 2: The marginal likelihood distribution gk(uk,\Γp

|xk,Ωp ,xk,\Ωp
)

can be evaluated point-wise

Cond. 3: This marginal likelihood could be reduced as

gk(uk,\Γp
|xk,Ωp ,xk,\Ωp

) = gk(uk,\Γp
|xk,\Ωp

) (12)

where xk,\Ωp
consists of all the elements in xk which are not ele-

ments of the block xk,Ωp . In conclusion, in this refinement step, if

x∗
k,Ωp

is sampled from the proposal distribution q(xk,Ωp |x
m
k,\Ωp

,xm
k−1)

and u∗
k,Γp

is sampled from gk(uk,Γp |u
m
k,\Γp

,x∗
k,Ωp

,xm
k,\Ωp

), the

acceptance ratio will be either Eq. (6) if Condition 2 is satisfied or

simplifies to Eq. (7) if Condition 3 is satisfied. The SMCMC-ABC

is summarized in Algorithm 3.

Algorithm 3 SMCMC-ABC

1: Initialize particle set {x
(j)
−1}

Np

j=1

2: for k = 1, . . . , T do

3: for m = 1, . . . , NMCMC do

4: Joint Draw

5: Propose {x∗
k,x

∗
k−1} ∼ q1(xk,xk−1|x

m−1
k ,xm−1

k−1 )
6: Propose u∗

k ∼ gk(uk|x
∗
k)

7: Compute the MH acceptance probability ρ1 = min(
1,

Kk,ǫ(yk−u
∗
k)fk(x

∗
k|x∗

k−1
)

q1(x
∗
k
,x∗

k−1
|xm−1

k
,x

m−1

k−1
)

q1(x
m−1

k
,x

m−1

k−1
|x∗

k,x∗
k−1

)

Kk,ǫ(yk−u
m−1

k
)fk(x

m−1

k
|xm−1

k−1
)

)

8: Accept {um
k ,xm

k ,xm
k−1} = {u∗

k,x
∗
k,x

∗
k−1} with proba-

bility ρ1
9: Block Refinement

10: Randomly divide xk into P blocks {Ωp}
P
p=1

11: Find associated partition of the observations {Γp}
P
p=1

12: for p = 1, . . . , P do

13: Propose {x∗
k,Ωp

} ∼ q(xk,Ωp |x
m
k,\Ωp

,xm
k−1)

14: Propose u∗
k,Γp

∼ gk(uk,Γp |u
m
k,\Γp

,x∗
k,Ωp

,xm
k,\Ωp

)
15: Compute the MH acceptance probability ρp,c2 or ρp,c3
16: Accept {um

k,Γp
,xm

k } = {u∗
k,Γp

,x∗
k} with probability

ρp,c2 or ρp,c3
17: end for

18: After a burn in period of Nburn , keep every Nthin MCMC

output x
(j)
k = xm

k as the new particle set

19: end for

20: end for

4. NUMERICAL STUDY

We compare the performance of the proposed SMCMC-ABC ap-

proach with the SMC-ABC [8] and an extension of it, denoted SMC-

RM-ABC, that includes a Resample-Move stage after the resampling

step, under two challenging models. To perform fair comparison

between the SMC-RM and the SMCMC, the resample move stage

adopted in the SMC-RM utilizes an identical block refinement stage

with an equivalent Markov kernel of the SMCMC for moving each

particle just after the resampling step (Line 9 - Algo 1). We note

that the results are produced as average over 50 realizations from the

model with time series of length T = 50. In all studies the kernel

Kk,ǫ is selected to be a multivariate Gaussian with scale ǫ.

ρp,c2 = min

(

1,
Kk,ǫ(yk − [u∗

k,Γp
,um

k,\Γp
])gk(u

∗
k,\Γp

|x∗
k,Ωp

,xm
k,\Ωp

)fk(x
∗
k,Ωp

,xm
k,\Ωp

|x∗
k−1)

Kk,ǫ(yk − [um
k,Γp

,um
k,\Γp

])gk(u
m
k,\Γp

|xm
k,Ωp

,xm
k,\Ωp

)fk(x
m
k,Ωp

,xm
k,\Ωp

|xm
k−1)

q(xm
k,Ωp

|xm
k,\Ωp

,xm
k−1)

q(x∗
k,Ωp

|xm
k,\Ωp

,xm
k−1)

)

(6)

ρp,c3 = min

(

1,
Kk,ǫ(yk − [u∗

k,Γp
,um

k,\Γp
])fk(x

∗
k,Ωp

,xm
k,\Ωp

|x∗
k−1)

Kk,ǫ(yk − [um
k,Γp

,um
k,\Γp

])fk(x
m
k,Ωp

,xm
k,\Ωp

|xm
k−1)

q(xm
k,Ωp

|xm
k,\Ωp

,xm
k−1)

q(x∗
k,Ωp

|xm
k,\Ωp

,xm
k−1)

)

(7)
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4.1. Linear and Gaussian Model

Let us firstly consider the dynamic linear and Gaussian model
{

xk = Akxk−1 + bk

yk = Hkxk + vk
(13)

with nx = ny , Ak = 0.99Inx and Hk = Inx . The state and obser-

vation noise are zero-mean multivariate Gaussian random variables

with covariance matrix Σb = 2Inx and Σv = Inx .

This example is used as a comparative illustration of the accu-

racy of the ABC algorithms in which the likelihood is tractable and

additionally the optimal solution is known in closed form via the

Kalman filter. It is always optimal from a statistical perspective to

utilize the exact likelihood in the algorithms described and therefore

the SMCMC, SMC-RM and SMC algorithms act as direct compa-

risons to their ABC counterparts. Furthermore, we study the degra-

dation in performance as the ABC tolerance is increased. Finally,

the impact of sampling only a sub-vector of the auxiliary observa-

tion at each iteration of the block refinement step is analyzed. In the

(SMCMC or SMC-RM)-ABC-FAS, all the auxiliary observation is

sampled (Γp = {1, . . . , ny}) while in the ABC-BAS versions, only

a sub-vector is sampled (in this example Γp = Ωp are of size 2).

Figure 1 shows the log-relative MSE error between the Monte-

Carlo algorithms and the Kalman filter which corresponds in this

model to the optimal algorithm and Table 1 shows the MSE for dif-

ferent numbers of particles for each algorithm. These results demon-

strate two clearly evident features, firstly that the SMCMC-ABC al-

gorithm performs close to optimal for small ABC tolerances and out-

performs both SMC-ABC and the modified version SMC-RM-ABC

for this high-dimensional problems in terms of MSE. In addition,

the incorporation of the block-refinement stage with sub-sampling

of the auxiliary ABC observation vector (ABC-BAS) significantly

improves the mixing of the MCMC stage in all cases. We quantify

this through the average acceptance probabilities for the SMCMC-

ABC algorithm for a range of dimensions as shown in Figure 2. Let

us finally remark that the value of ǫ should not be too small in order

to prevent the collapse of the Monte-carlo approximation of the ABC

posterior and not too high in order to have small approximation error

between the ABC posterior and the true posterior.
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Fig. 1. Evolution of the log-relative time average MSE error as a

function of the ABC tolerance ǫ with nx = 30 and Np = 500
particles. All results present log MSE relative to the optimal Kalman

filter so zero represents the Kalman reference.

4.2. Heavy-tailed Observation Noise

In this example, we consider the following model:
{

xk = Akxk−1 + bk

yk,i = xk,i + vk,i ∀i = {1, . . . , nx}
(14)

Np Algorithm Standard ABC-FAS ABC-BAS

500
SMC 68.85 69.01

SMC-RM 39.09 49.3 40.23
SMCMC 16.26 37.4 20.62

1000
SMC 58.62 58.71

SMC-RM 31.03 49.3 32.57
SMCMC 15.69 32.11 19.51

Kalman filter 14.45

Table 1. Time average of the MSE obtained for the linear and Gaus-

sian model with nx = ny = 20. The MSE of the ABC version of

the Monte-Carlo algorithms corresponds to the best one obtained on

different values for ǫ.
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Fig. 2. Evolution of the acceptance rate of the different variants of

the SMCMC-ABC as a function of the ABC tolerance ǫ.

where nx = ny = 20 and the observation noise samples are dis-

tributed according to the heavy tailed stable mixture model:

{vk,i}
nx
i=1

i.i.d.
∼ λSα(vk,i|β, γ, µ)+(1−λ)Sα(−vk,i|β, γ, µ) (15)

Sα(·|β, γ, µ) denotes the α-stable distribution with characteristic

exponent 0 < α < 2, dispersion parameter γ > 0, location param-

eter µ and skewness parameter β ∈ [−1; 1]. The likelihood under

this model is in general intractable to write in closed form, however

we consider for each mixture component the special case of Levy

distribution (α = 0.5, β = 1) in order to make a comparison with

the non-ABC versions. Figure 3 shows the filtering result in terms of

the log time average MSE of the algorithms as a function of the ABC

tolerance ǫ. We observe again the out performance of the SMCMC-

ABC algorithm versus its competitors in all simulations.
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Fig. 3. Evolution of the logarithm of the time average MSE of the

algorithms as a function of the ABC tolerance ǫ.

5. CONCLUSION

In this work, we address the challenging problem of filtering in the

context of high-dimensional state and observation vectors with an

intractable likelihood. In order to solve this problem, a novel se-

quential MCMC based on an ABC approximation of the filtering

distribution is derived. Numerical simulations clearly show that this

proposed SMCMC-ABC approach outperforms existing ABC meth-

ods. Future work will be dedicated to the development of an auto-

matic learning strategy for the optimal ABC tolerance ǫ.
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