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ABSTRACT

In this paper, we consider channel modeling and data detection

in a communication system where an amplify-and-forward relay

is used to transmit data between a receiver and a transmitter

in a flat-fading channel. The effective channel, which is the

cascade of the transmitter-to-relay and relay-to-receiver Rayleigh

channels, is modeled as a first-order Laplace autoregressive (AR)

process. We also show that the resulting additive noise of the

cascade of the two channels has a normal-Laplace distribution

which enables us to derive a better approximation to the likelihood

probability distribution function (pdf). Given the channel model

and better characterization of the likelihood pdf of the system, we

formulate the transmission process as dynamic state-space model,

and propose a particle filtering based algorithm for data detection.

The effectiveness of the performance of the proposed algorithm is

investigated through computer simulations.

Index Terms— Relay-based, Particle filtering, Channel

estimation, Laplace AR, normal-Lapalace

1. INTRODUCTION

The increased emergence of new wireless services and demand for

high data rates requires the continual enhancement of the capacity

of wireless cellular networks. The conventional solution to the need

for more capacity in the cellular network is to increase frequency

reuse by cell division which requires installing new base stations

(BS) [1]. However, the cost of installing new BS and its concomitant

infrastructure is high. Recently, relay-based communication system

is presented as an alternative solution to enhancing the capacity of

cellular networks. Compared to a BS, a relay is a simpler device and

it is much less costly.

In relay-based communication network, one or multiple relays

forward the data sent from the transmitter before arriving at the

receiver. The relay can be a decode-and-forward (DF) relay which

essentially acts as a repeater or a simple amplify-and-forward (AF)

relay which functions as a regenerator [2].

Relay-based technology promises several benefits over the

traditional single-hop cellular network. Since the addition of a relay

in a cellular network reduces the transmission distance, it effectively

reduces the signal propagation loss which translates to increased

signal-to-interference-noise ratio (SINR) [3]. The increased

SINR enhances the capacity and improves the coverage of the

cellular network. Furthermore, relays can provide spatial diversity

to mitigate the effect of fading channels through cooperative

communication. Such potential benefits have attracted research

interest in the study of of relay-based communication which includes

channel modeling and data detection in one or multiple relay systems

[4].

In this paper, we consider the problem of channel modeling and

data detection in a relay-based communication system where there is

one AF relay between the transmitter and the receiver. Such a system

is composed of two communication links which are the transmitter-

to-relay and relay-to-receiver links. Assuming the receiver and the

relay are mobile, the overall channel of the communication system

is a cascade of mobile-to-mobile and mobile-to-fixed channels. As

a result the effective channel of the communication system has

a different statistical characteristics than the single-hop cellular

network channel. For example, in Non-Line-Of-Sight (NLOS)

transmission, the real and imaginary component of the a wireless

channel are modeled as uncorrelated and identically distributed

Gaussian pdfs. With similar assumptions, the real and imaginary

component of an overall relay channel, however, have uncorrelated

identically distributed Laplace pdfs [5]. Furthermore, the second

order statistics such as the autocorrelation function of the single-hop

channel is different than a relay channel. The time variation of the

overall relay channel is faster than the time variation of a single-

hop wireless channel, and as a result data detection in a relay-based

communication is more challenging.

1.1. Related work

Most of the reported work on data detection in a relay-based

communication apply Least Square (LS) or Linear Minimum Mean

Square Estimation (LMMSE) methods [2]. These approaches

assume a slow-varying channel and utilize pilot data for channel

estimation, and, therefore, require significant additional bandwidth

for the transmission of pilot data to obtain a reasonable symbol

error rate. Other methods model each of the two communication

channel as Gaussian AR processes, and employ Extended Kalman

Filter (EKF) [2], particle filtering [6] or particle filtering MCMC

methods [7] for data detection and channel estimation.

In this paper, we derive a particle filtering based algorithm for

blind data detection and joint channel estimation. Our approach has

two novel contributions. The first contribution is that we show the

effective relay channel can be modeled by one complex Laplace AR

process rather that by two separate complex Gaussian AR processes.

The second contribution is that we provide a better characterization

of the pdf of the noise at the receiver by showing that it is

normal-Laplace distribution. Using the derived characterization

of the received signal and the developed first-order Laplace AR

process channel model, we represent the communication process as

a dynamic system in a state-space form, and apply particle filtering

techniques for joint data detection and channel estimation without

the need for the transmission of pilot signals.

The remaining part of the paper is organized as follows. Section

2 presents the signal model, and Section 3 describes the channel

model. The derivation of the proposed algorithms is explained in
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Section 4. Computer simulations is provided in Section 5 and,

finally, conclusions are given in Section 6.

2. SIGNAL MODEL

Suppose data symbols, {sk}, obtained from a finite modulation

alphabet, A, are transmitted over a flat-fading relay-based

communication system which consists of one AF relay. The discrete-

time equivalent of the baseband signal received at the relay at time

k, zk, is given by,

zk = h1,ksk + uk, (1)

where h1,k denotes the value at time k of the flat-fading transmitter-

to-relay channel, h1, and uk ∼ N (0, σ2
u) is a zero-mean complex

Gaussian noise added by the transmitter-to-relay channel. The

relay, in turn, amplifies-and-forwards, the data to the receiver over

a flat-fading relay-to-receiver channel, h2. Thus, the discrete-time

equivalent of the baseband signal obtained at the receiver at time k
can be written as

yk = Akh1,kh2,ksk + h2,kuk + vk, (2)

where Ak is the amplification factor of the relay and vk ∼ N (0, σ2
v)

is an additive complex zero-mean white Gaussian noise that is

introduced by the relay-to-receiver channel. Observing that the first

term of (2) is the signal part and the second and third term constitute

the noise part of yk, we compactly rewrite it as,

yk = Akhksk + nk, (3)

where h = h1h2 is the effective channel and nk is the effective non-

Gaussian noise of the system. In the sequel, we derive the pdf of the

real and imaginary components of the channel, h, and the noise n.

Proposition 1: If the fading of h1 and h2 are Rayleigh processes,

then the real and imaginary component of h are uncorrelated zero-

mean Laplace pdfs.

The proof of proposition 1 follows from the observation that,

since h1 and h2 are Rayleigh processes, h1 and h2 can be written

in their real and imaginary component as h1 = h1R + jh1I and

h2 = h2R + jh2I where h1R and h1I are zero mean Gaussian

identically and independently distributed (i.i.d.) random variables

with a pdf N (0, σ2
1), and h2R and h2I are i.i.d. random variables

with a pdf N (0, σ2
2). The real and imaginary component of of h are

then given by x = h1Rh2R−h1Ih2I and the y = h1Rh2I+h1Ih2R

respectively.

Let us first consider the real component x, and write it as the

difference of two random variables r and s where r = h1Rh2R

and s = h1Ih2I . Since r and s are independent random

variables, the characteristic function of x can be computed as the

product of the characteristic function of r and −s, and is given

by E[ejωx] = E[ejωr]E[e−jωs]. We can compute E[ejωr] =
Eh2R

[

Eh1R|h2R
[ejωh1Rh2R |h2R]

]

= 1√
1+σ2

1σ
2
2ω

2
. Similarly,

E[ejωs] = 1√
1+σ2

1σ
2
2ω

2
. Then, E[ejωx] = 1

(1+σ2
1σ

2
2ω

2)
which

represents a Laplace pdf with λ = σ1σ2.

phR(x) = L(x; 0, λ) = 1

2λ
e−

|x|
λ

phI (y) = L(y; 0, λ) = 1

2λ
e−

|y|
λ (4)

where λ = σ1σ2. Following the same steps, we can show that y
also has a Laplace pdf with λ = σ1σ2. Furthermore, it is straight

forward to show that E[xy] = 0.

Preposition 2: The real and imaginary components of the noise

of the relay-based system, n = h2u+ v have identical uncorrelated

symmetric normal-Laplace pdfs.

The proof of Preposition 2 follows from the observation that

the n1 = h2u is a product of two independent complex Gaussian

random variables. From the proof given for Proposition 1 , the

real and imaginary components of the n1 are uncorrelated identical

Laplace probability density functions with λn = σ2σu. Since

n1 and v are independent, the characteristic function of the real

(imaginary) part of n is given by

E[ejωnR ] = E[ejωn1R ]E[ejωvR ] =
e−

σ2
vω2v2

2

1 + λn1ω
2
.

Taking the inverse of the characteristic function, we obtain the zero-

mean symmetric normal-Laplace probability density function [8].

The symmetric normal-Laplace distribution, which we denote by

nR ∼ NL(nR;µ, σv, λn), has a closed form expression given by

pnR(x) =
1

2λn

√

(2πσ2
v)

e
− (x−µ)2

2σ2
v [R(x1) +R(x2)]

where µ is the mean, x1 = σv
λn

− (x−µ)
σv

, x2 = σv
λn

+ (x−µ)
σv

, and

the function R(·) is the Mills’ ratio. The Mills’ ratio is given by

R(z) = Q(z)

1/
√

2πe−z2/2
where Q(z) is the popular Q function of a

standard Gaussian density.

Following similar steps, it can be shown that the imaginary

part,nI , has the same pdf as nR, nI ∼ NL(nI ;µ, σv, λn).
Furthermore, we note that nR and nI are uncorrelated, E[nRnI ] =
0, and have equal variance, σ2

nR
= σ2

nI
= σ2

v + 2λ2
n.

3. CHANNEL MODEL

Assuming that σ2
1 = σ2

2 = 1, the real and imaginary component

of h have marginal standard Laplace distributions. We, therefore,

approximately model the overall channel, h, as a complex Laplace

AR process.

Following [9], a first order AR process which has a standard

Laplace marginal distribution can be generated using

hk = κkβhk−1 + ϵk (5)

where κk is a discrete random variable which takes either 0 or 1 with

probability mass function (pmf) given by

pκk (x) = αδ(x− 1) + (1− α)δ(x)

ϵk is the driving complex mixture Laplace distribution given by

pϵk (x) = (1− γ)L(x; 0, 1) + γL(x; 0,
√

(1− α)β)

with pϵ0(x) = L(x; 0, 1), and α and β are constant coefficients, and

γ =
αβ2

(1− (1− α)β2)
.

Multiplying both sides of (5) by hk−l, we obtain the

autocorrelation of the Laplace AR process is given by

E[hkhk−l] = 2(αβ)l for l ≥ 0

The Laplace AR coefficients, α and β, in our model are chosen to

match the theoretical autocorrelation of the time variation of the
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effective channel of the relay-based communication system. The

theoretical autocorrelation of flat-fading channels depends only on

their fading rate which is a product of the Doppler frequencies

and sampling period. For relay-based channels which consists

of fixed-to-mobile and mobile-to-mobile channels, the theoretical

autocorrelation is given by,

E[hkhk−l]theoretical = 2σ2
1σ

2
2J0(ω1Tsl)

2J0(ω2Tsl)

where ω1 and ω2 are angular doppler frequencies of the mobile relay

and mobile receiver respectively, Ts is the sampling period, and

J0(·) is the zeroth-order bessel function of first kind.

Using the received signal (3) as observation equation, and the

channel model (5) as a state equation, we can formulate the problem

as a dynamic system with a state-space equations given by

state space formulation

{

hk = κkβhk−1 + ϵk
yk = Akhksk + nk

(6)

In this paper, we assume both, the transmitter-to-relay and the

relay-to-receiver, channels are stationary and the their fading rates

are known, and, thus, the AR coefficients, α and β, are fixed and

pre-determined. Moreover, we assume a fixed gain AF relay with a

known amplification factor Ak = A.

Having the state-space representation of the problem given by

(6), our main objective is to make a real-time estimate of the

symbols, sk, and the channel, hk, from the available observation

until time k, y0:k.

4. PARTICLE FILTER METHOD FOR DATA DETECTION

AND CHANNEL ESTIMATION

Our approach to the estimation of the transmitted data and channel

is based on a Bayesian framework. The framework requires

the sequential estimation of the posterior probability distribution

function, p(s0:k, h0:k|y0:k). Unfortunately, the analytic estimation

of the posterior pdf in a closed form is intractable, we, therefore,

propose to use Sequential Importance Sampling (SIS) or particle

filtering techniques for Monte Carlo approximation of the posterior

pdf.

A particle filter can be used to sequentially approximate

the posterior pdf, p(s0:k, h0:k, |y0:k), by a set of N samples

{s0:k, h0:k}Ni=1, with their associated weights {wk}Ni=1 as follows

[10],

p̂(s0:k, h0:k|y0:k) =
N
∑

i=1

δ(s0:k, h0:k − s
(i)
0:k, h

(i)
0:k)w

(i)
k ,

where δ(·) is a Dirac delta function. The samples are drawn from

an importance density π(s0:k, h0:k|y0:k), and the associated weights

are computed as,

w
(i)
k ∝ p(s0:k, h0:k|y0:k)

π(s0:k, h0:k|y0:k)
The sequential estimation of p(s0:k, h0:k|y0:k) is possible, if we

select an importance density that is factorizable as,

π(s0:k, h0:k|y0:k) = π(sk, hk|s0:k−1, h0:k−1, y0:k)

× π(s0:k−1, h0:k−1|y0:k−1) (7)

With such importance density, the weights can be sequentially

computed as,

w
(i)
k ∝ w

(i)
k−1

p(yk|s(i)k , h
(i)
k )p(h

(i)
k , s

(i)
k |h(i)

k−1, s
(i)
k−1)

π(sk, hk|s0:k−1, h0:k−1, y0:k)

After the posterior pdf is approximated, Bayesian estimates of

sk can be obtained by using marginal Maximum A Posteriori (MAP)

estimator as

smap
k = argmax

sk

{

N
∑

i=1

δ(sk − s
(i)
k )w

(i)
k

}

. (8)

and, similarly, the channel, hk can be estimated using the marginal

Minimum Mean Square Error (MMSE) estimator as

hmmse
k =

N
∑

i=1

h
(i)
k w

(i)
k (9)

To derive particle filtering algorithms, we consider a prior

importance density given by,

π(sk, hk|s0:k−1, h0:k−1, y0:k) = p(sk|sk−1)p(hk|hk−1) (10)

Assuming the transmitted sequence sk are i.i.d., we see that

p(sk|sk−1) = p(sk) =
1

|A| where |A| is the size of the modulation

alphabet. Furthermore, we obtain the prior density of the channel,

p(hk|hk−1), is given by

p(hk|h(i)
k−1) = αpϵk (hk − βh

(i)
k−1) + (1− α)pϵk (hk) (11)

Therefore, a sample, (s
(i)
k , h

(i)
k ), is obtained by attaching a sample

of sk drawn, with equal probability, from the modulation alphabet to

a sample of h
(i)
k drawn from (11). Note that obtaining samples from

the channel prior density requires drawing samples from a Laplace

pdf. A sample, m ∼ L(x;µ, λ), can be obtained using the following

two steps:

1. Draw two random samples from a uniform distribution u1 =
U [0, 1] and u2 = U [0, 1]

2. Obtain m = µ+ λ× (log(u1)− log(u2))

After the samples are obtained using the prior importance density,

the corresponding weights are obtained from,

w̃
(i)
k ∝ w

(i)
k−1p(yk|s

(i)
k , h

(i)
k ) (12)

where the likelihood function can be approximately computed

p(yk|s(i)k , h
(i)
k ) = NL(yk;Ah

(i)
k s

(i)
k , σv, λw)

Before applying (8) and (9) for MAP and MMSE estimation, the

weights obtained by (12) should be normalized as,

w
(i)
k =

w̃
(i)
k

∑N
n=1 w̃

(n)
k

(13)

We note that it is shown in [11] that a pdf computed using a SIS

algorithm as described above converges to the desired posterior pdf

for a sufficiently large number of particles, i.e.,

p̂(s0:k, h0:k|y0:k) N→∞−→ p(s0:k, h0:k|y0:k).
A practical implementation of the particle filtering algorithms

require a resampling procedure which avoids the degeneracy of the

particles. The basic idea of resampling is to generates a new of

set of particles at time k + 1 by randomly selecting from particles

at time k with a probability equal to the size of their weights,

therefore, effectively replicating those particles with large weights

while eliminating those with insignificant weights.

The proposed algorithm for data detection and data estimation is

summarized in Table 1.
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Initialization h0 ∼ L(h; 0, 1) (real and imaginary)

For k = 0 to K (total number of symbols)

For i = 1 to N (total number of particles)

Draw a sample s
(i)
k

s
(i)
k ∝ 1

|A|
Draw a sample of hk (real and imaginary) using the steps

Draw samples u1 ∼ U [0, 1] and u2 ∼ U [0, 1]
If u1 ≤ α then κk = 1 else κ = 0
If u2 ≤ p draw a sample hk from

h
(i)
k ∝ L(h;κkβh

(i)
k−1, 1)

Else draw a sample hk from

h
(i)
k ∝ L(h;κkβh

(i)
k−1,

√

(1− α)β)

Update weights w
(i)
k

w̃
(i)
k ∝ w

(i)
k−1NL(yk;Ah

(i)
k s

(i)
k , σv, λw)

Normalize weights w
(i)
k =

(

∑N
n=1 w̃

(n)
k

)−1

w̃
(i)
k

Resample if Neff = 1

ΣN
i=1

(

w
(i)
k

)2 < N/2

ŝk = argmaxsk

{

∑N
i=1 δ(s

(i)
k − sk)w

(i)
k

}

Table 1. Algorithm for data detection in relay channels.

5. SIMULATION RESULTS

We conducted computer simulation experiments to verify the

effectiveness our proposed algorithm. To combat the phase

ambiguity problem that arises in blind equalization methods, in

our experiments, we have used a differentially encoded BPSK

modulation scheme with a symbol alphabet A = {+1,−1}. We

have considered the transmitter-to-relay channel to be a fixed-to-

mobile flat-fading channel, and the relay-to-receiver channel to be

mobile-to-mobile flat-fading channel. We assume both channels

have the same fading rate fdTs = 0.01 by considering a TDMA

protocol in which the transmission between transmitter-to-relay and

relay-to-receiver use the same carrier frequency but different time-

slots. The fading characteristics of the channels were modeled with a

first-order Laplace AR process provided in section 2 with coefficient

values α = 0.9990 and β = 0.9990. The values of α and β
were selected by matching the autocorrelation of the Laplace AR

processes to the theoretical autocorrelation of the overall channel

with the fading rate fdT = 0.01.

We have used a particle size of M = 100 in all the experiments,

and resampling was applied whenever the weights degenerated. The

weights were determined degenerated when the effective sample

size becomes less than half of the total particle size (M). The

particle size was fixed by experimentation, and it was observed

that increasing the particle size over M = 100 did not provided

significant increase in performance.

In Figure 1, we have plotted the performance, Symbol-Error-

Rate (SER) versus Signal-to-Noise Ratio (SNR), of a receiver that is

based on our proposed algorithm. We have compared our algorithm

with an LMMSE receiver that employs one pilot symbol interspersed

every 10 data symbols for channel estimation. Moreover, we have

simulated a receiver that assumes the channel known to serve as a

lower bound benchmark for our algorithm. As seen from the figure,

the receivers based on our proposed algorithm performed better than

the LMMSE receiver.
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Fig. 1. SER as a function of SNR.

6. CONCLUSIONS

In this paper, we have considered the problem of data detection in

relay-based communication system in which an AF relay is used

to transmit data over a flat-fading channel. We have developed a

channel model which is a first-order Laplace AR process. With such

channel model, we have designed a new algorithms for blind joint

data detection and channel estimation based on Bayesian estimation

of the transmitted symbols using particle filtering techniques. The

effectiveness of the algorithm in terms of symbol error rate is

demonstrated using computer simulations. The algorithm is also

compared with an LMMSE receiver, and have been shown that it

has superior performance.
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