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ABSTRACT

A marginalised particle filter (PF) for bearings-only tracking in mod-
ified polar coordinates (MPC) is developed. Using an Euler approx-
imation to the dynamical equation it is shown that the range can be
marginalised out so that only the three remaining elements of the
state vector need to be sampled in the PF. The marginalised PF in
MPC is shown to significantly outperform existing PFs for BOT in a
numerical example.

Index Terms— Particle filters; bearings-only tracking; nonlin-
ear filters.

1. INTRODUCTION

In bearings-only tracking (BOT) the aim is to estimate the trajectory
of a moving object using noisy direction measurements taken by a
moving sensor. This is an important problem in several applications,
such as passive sonar and radar tracking where directional informa-
tion is obtained by sensing signals emitted from an object [1].

BOT is usually approached in a Bayesian framework in which
the aim is to compute the posterior density. Given the posterior den-
sity, the minimum mean square error estimator, the posterior mean,
can be computed. Since the posterior density is not available in
closed-form for BOT the challenge is to find an accurate yet com-
putationally efficient approximation. The most common method is
to approximate the posterior by a Gaussian [2, 3, 4, 5]. Gaussian
approximations to the posterior are computationally efficient, since
they represent the posterior with relatively few parameters, and can
be surprisingly accurate in many cases. However, a Gaussian den-
sity can only approximate a non-Gaussian posterior density with a
limited degree of accuracy.

Particle filters (PFs) offer the possibility of arbitrarily accurate
approximation of the posterior, albeit with increased computational
expense [6]. A PF is a recursive Monte Carlo method which repre-
sents the posterior by weighted random samples, usually drawn from
an importance density. In order to be a viable solution in practice,
PFs must be carefully designed. A review of techniques which can
be used to improve PF performance can be found in [6].

In this paper we consider the use of a particular PF improvement
strategy referred to as marginalisation, or Rao-Blackwellisation.
Marginalisation replaces Monte Carlo approximation with analyti-
cal computation wherever possible. This can be done, for example,
if the dynamical and measurement models are linear and Gaussian
for some elements of the state conditional on the remaining elements
[7]. This situation arises in BOT with the velocity elements of the
state vector forming the “linear/Gaussian” part of the state vector
so that only the position elements need to be sampled. However, a

marginalised PF exploiting this structure provided no discernible im-
provements in performance when applied to various BOT problems
in [8].

A somewhat different approach to marginalisation for BOT is
pursued here. The first element of our approach is to represent the
object kinematics in modified polar coordinates (MPC). MPC were
proposed in [2] to handle the fact that the range of an object mov-
ing with constant velocity is not observable until the sensor platform
manoeuvres. In MPC the unobservable range is decoupled from the
remaining elements of the state vector. The second element of our
approach is to use an Euler approximation [9] to the dynamical equa-
tion rather than the exact equation. Once this is done it can be shown
that, conditional on the other elements of the state vector, inference
on the range can be performed analytically. As a result only three of
the four elements of the state vector need to be sampled in the PF.

Most PFs for BOT represent the state in Cartesian coordinates
[10, 11, 12] although log polar coordinates, which are closely related
to MPC, were used in [13]. Marginalisation for BOT in Cartesian
coordinates was used in [8], albeit with no appreciable benefit. The
novelty of this paper is to apply marginalisation to BOT in MPC.
This will be seen to provide a major improvement in performance
for the numerical example considered here.

The paper is organised as follows. The dynamical model for
MPC is given in Section 2 for both Cartesian coordinates and MPC.
The marginalised PF is developed in Section 3 and its performance
is compared with several PFs in Section 4.

2. MODEL

We begin by specifying the dynamical model in Cartesian coordi-
nates and then show how a dynamical model for modified polar co-
ordinates (MPC) can be obtained using the Euler approximation.

2.1. Cartesian coordinates

For t ∈ R, the object kinematics relative to the sensor are collected
into the vector z(t) = [x(t), y(t), ẋ(t), ẏ(t)]′ where (x(t), y(t)) is
target position relative to the sensor at time t and the dot notation in-
dicates differentiation with respect to time. The motion of an object
which moves with a random walk in velocity can be modelled by the
stochastic differential equation (SDE)

ż(t) = Az(t) + B(w(t)− a(t)), (1)

where w(t) is a white Gaussian noise process with power spectral
density matrix qI2, a(t) is the sensor acceleration and

A =

[
0 1
0 0

]
⊗ I2, (2)
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B =

[
0
1

]
⊗ I2. (3)

In (2) and (3), Id is the d× d identity matrix and⊗ is the Kronecker
product.

Measurements are acquired with sampling period T . The object
state at the time of the kth measurement is denoted as zk = z(kT ).
The evolution of the target state over a sampling period is found by
discretising (1) to give

zk = Fzk−1 − uk + wk (4)

where wk are independent zero-mean Gaussian random variables
with covariance matrix Q, uk is the input due to sensor movement
and

F =

[
1 T
0 1

]
⊗ I2, (5)

Q = q

[
T 3/3 T 2/2
T 2/2 T

]
⊗ I2. (6)

2.2. Modified polar coordinates

The state vector in MPC at time t ∈ R is denoted as x(t) =

[β(t), r(t), β̇(t), ρ̇(t)]′ where β(t) is the direction of the object,
r(t) is the range and ρ̇(t) = ṙ(t)/r(t). Let xk = x(kT ). Note that
the MPC formulation used here differs from [2] since we use range
rather than inverse range.

The discrete-time evolution of the state vector in MPC can be
obtained using (4) and the transformation e : R4 → R4 from MPC
to relative Cartesian coordinates. This gives

xk = e−1(F e(xk−1)− uk + wk) (7)

Instead of using the exact discrete-time dynamical equation (7), we
return to the SDE governing object motion in MPC and construct
an Euler approximation [9]. Although using an approximation when
the exact dynamics are available may seem nonsensical, the use of
an Euler approximation for the dynamics is instrumental in the de-
velopment of an efficient marginalised PF.

The SDE in MPC corresponding to (1) can be found as

ẋ(t) = c(x(t)) + D(x(t))(w(t)− a(t)) (8)

where, for x = [β, r, β̇, ρ̇],

c(x) =


β̇
rρ̇

−2ρ̇β̇
β̇2 − ρ̇2

 , (9)

D(x) = 1/r

 02

− sin(β) cos(β)
cos(β) sin(β)

 . (10)

with 0d a d× d matrix of zeros. The Euler approximation of (7) is

xk ≈ f(xk−1) + D(xk−1)(vk − Tak−1) (11)

where f(x) = x + Tc(x), vk are independent zero-mean Gaussian
random variables with covariance matrix qT I2 and ak−1 = a((k −
1)T ). The Euler approximation (11) becomes exact as T → 0.

The measurement φk taken at time kT satisfies

φk = βk + ek (12)

where e1, e2, . . . are independent zero-mean Gaussian random vari-
ables with variance κ. The process noise {vk} and measurement
noise {ek} are independent.

3. MARGINALISED PARTICLE FILTER

In this section the marginalised PF is developed by first establishing
a preliminary result and then showing how this result can be used to
avoid sampling the range. Some details involved in the implementa-
tion of the filter are also discussed.

3.1. Preliminary result

Consider the following density parameterised by θ = [ν, τ, ω], ν ∈
N, τ ∈ R, ω > 0:

M(r;θ) = rν exp(−ω(r − τ)2)/C(θ), r > 0, (13)

where
C(θ) =

∫ ∞
0

rν exp(−ω(r − τ)2) dr (14)

Let N(·;µ,Σ) denote the Gaussian density with mean µ and covari-
ance matrix Σ. We then have the following.

Lemma 1. For p ∈ Rm,

N(p;µ/r,Σ/r2)M(r;θ) = f(p;µ,Σ,θ)M(r; θ̃) (15)

where θ̃ = [ν̃, τ̃ , ω̃]′ with ν̃ = ν +m and

τ̃ = τ + g(µ− pτ) (16)
ω̃ = ω/(1− gp) (17)

f(p;µ,Σ,θ) =
C(θ̃)

τmC(θ)

√
ω̃

ω
N(p;µ/τ,S(p)/τ2) (18)

where g = p′S(p)−1/(2ω) and S(p) = pp′/(2ω) + Σ.

Proof. The product can be written as

N(p;µ/r,Σ/r2)M(r;θ)

=
rν+m

C(θ)

√
π

ω
N(µ;pr,Σ)N(r; τ, 1/(2ω)) (19)

=
rν+m

C(θ)

√
π

ω
N(µ;pτ,S(p))N(r; τ̃ , 1/(2ω̃)) (20)

where the Gaussian product lemma [14] has been used to obtain (20).
The result (15) follows directly.

3.2. Development of the marginalised PF

We now show how Lemma 1 can be used to construct a marginalised
PF for BOT using the Euler approximation (11). Let ξk =

[βk, β̇k, ρ̇k]
′. Assume the availability at time (k − 1)T of a pos-

terior density approximation consisting of samples ξ1
k−1, . . . , ξ

n
k−1

with associated weights w1
k−1, . . . , w

n
k−1 along with the parameters

θ1
k−1, . . . ,θ

n
k−1 of the posterior density of the range rk−1 condi-

tional on each sample. The posterior density πk−1(·) can then be
approximated as

πk−1(xk−1) ≈
n∑
i=1

wik−1δ(ξk−1 − ξik−1)M(rk−1;θ
i
k−1) (21)

It will be shown that a posterior density approximation of the same
form can be obtained at time kT . Before continuing it is convenient
to define the partition ξk = [βk, ζ

′
k]
′, ζk = [β̇k, ρ̇k]

′ where, accord-
ing to the Euler approximation (11), the evolution of ζk satisfies

ζk|xk−1 ∼ N(·;h(ζk−1) + sk(βk−1)/rk−1,P/r
2
k−1) (22)
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where ∼ means “is distributed as” and

h(ζ) =

[
β̇ − 2T ρ̇β̇

ρ̇+ T (β̇2 − ρ̇2)

]
, (23)

sk(β) = T

[
sin(β) − cos(β)
− cos(β) − sin(β)

]
ak−1, (24)

P = qT I2 (25)

The prior density can be found, using (11) and (22), as

$k(xk) =

∫
δ(βk − (β + T β̇)) δ(rk − r(1 + T ρ̇))

×N(ζk;h(ζ) + sk(β)/r,P/r
2)πk−1(x) dx (26)

Substituting the PF approximation of πk−1(·) into (26) gives

$k(xk) ≈
n∑
i=1

wik−1δ(βk − β̃ik)
∫

N(ζk;h
i
k + sik/r,P/r

2)

×M(r;θik−1)δ(rk − r(1 + T ρ̇ik−1)) dr (27)

where β̃ik = βik−1 + T β̇ik−1, hik = h(ζik−1) and sik = sk(β
i
k−1).

Using Lemma 1 gives

$k(xk) ≈
n∑
i=1

wik−1δ(βk − β̃ik)f(ζk − hik; s
i
k,P,θ

i
k−1)

×
∫
δ(rk − r(1 + T ρ̇ik−1))M(r; θ̂

i

k−1(ζk)) dr (28)

where θ̂
i

k−1(ζ) = [ν̂ik−1, τ̂
i
k−1(ζ), ω̂

i
k−1(ζ)]

′ with ν̂ik−1 = νik−1 +
2 and

τ̂ ik−1(ζ) = τ ik−1 + gik(ζ)[s
i
k−1 − (ζ − hik−1)τ

i
k−1] (29)

ω̂ik−1(ζ) = ωik/[1− gik(ζ)(ζ − hik−1)] (30)

with gik(ζ) = (ζ − hik−1)S
i
k(ζ)

−1 and Sik(ζ) = (ζ − hik−1)(ζ −
hik−1)

′ + 2ωik−1P. Evaluating the remaining integral gives

$k(xk) ≈
n∑
i=1

wik−1δ(βk − β̃ik)f(ζk − hik; s
i
k,P,θ

i
k−1)

×M(rk; θ̃
i

k(ζk)) (31)

where θ̃
i

k(ζ) = [ν̃ik, τ̃
i
k(ζ), ω̃

i
k(ζ)]

′ with ν̃ik = ν̂ik−1 and

τ̃ ik(ζ) = (1 + T ρ̇ik−1)τ̂
i
k−1(ζ) (32)

ω̃ik(ζ) = ω̂ik−1/(1 + T ρ̇ik−1)
2 (33)

The posterior density at time kT can be found, using Bayes’
rule, as

πk(xk) ∝ N(φk;βk, κ)$k(xk) (34)

where we have used the measurement equation (12). After substitut-
ing the prior density approximation (31) into (34) it can be seen that
the posterior density decomposes into a product of the terms:

πk(ξk) ∝ N(φk;βk, κ)

n∑
i=1

wik−1δ(βk − β̃ik)

× f(ζk − hik; s
i
k,P,θ

i
k−1) (35)

πk(rk|ξk) = M(rk; θ̃
i

k(ζk)) (36)

An approximation to the posterior can now be obtained by sampling
from (35) and evaluating (36) for each sample of ξk.

To construct a Monte Carlo approximation of πk(ξk) we first re-
verse the marginalisation over the sample index in the mixture (35),
as in [11]. This permits the important resampling step [10] to enter
into the sampling procedure in a natural manner. We have

πk(ξk, i) ∝ w
i
k−1N(φk;βk, κ)δ(βk − β̃ik)

× f(ζk − hik; s
i
k,P,θ

i
k−1) (37)

= δ(βk − β̃ik)πk(ζk, i) (38)

where

πk(ζk, i) ∝ w
i
k−1N(φk; β̃

i
k, κ)f(ζk − hik; s

i
k,P,θ

i
k−1) (39)

It is clear that only ζk and the auxiliary variable i can be sampled
since, given i, we have βk = β̃ik. A sample of size n can be drawn
directly from (39) as follows. For a = 1, . . . , n, set ia = j with
probability proportional to wjk−1N(φk; β̃

j
k, κ) and then draw ζak ∼

f(· − hi
a

k ; si
a

k ,P,θ
ia

k−1). Since samples are drawn directly from
(39) the sample weights are uniform, i.e., wik = 1/n. Finally, we set

βak = β̃i
a

k and compute the parameters θak = θ̃
ia

k (ζak).

3.3. Implementation details

For simplicity the marginalised PF for BOT has been developed with
the Euler approximation applied over the whole sampling period of
duration T . This is likely to result in poor performance for large
T . At the expense of additional computations, it is straightforward
to divide the sampling period into m intervals and apply the Eu-
ler approximation over intervals of duration T/m. This results in
Algorithm 1. The quantity sk(β; t) appearing in lines 5 and 17 is
computed as shown in (24) with ak−1 replaced by a((k− 1)T + t).

The algorithm calls for samples to be drawn from the non-
standard density f(·) given in (18). To do this we note that

f(ζ − h; s,P,θ) =

∫
N(ζ;h + s/r,P/r2)M(r;θ) dr (40)

Therefore, ζ can be sampled by drawing r ∼ M(·;θ) and then draw-
ing ζ ∼ N(·;h + s/r,P/r2). The problem is then to draw from
the non-standard distribution M(·;θ). This can be done by rejection
sampling [15] using a truncated Gaussian density over (0,∞) with
mean r∗(θ) and variance 1/(2ω) where r∗(θ) is the location of the
peak of M(·;θ). This is given by, for τ > 0,

r∗(θ) = τ
(
1 +

√
1 + 2ν/(τ2ω)

)/
2 (41)

Although its derivation is not given here for the sake of brevity, the
bounding constant is close to unity in most cases indicating that sam-
ples from the proposal are usually accepted.

Clearly the marginalised PF will not converge to the true poste-
rior as the sample size n→∞ due to errors introduced by the Euler
approximation. It may be conjectured that as m → ∞, so that the
Euler approximation becomes exact, the marginalised PF will con-
verge to the true posterior as n→∞ but this remains to be proved.

4. NUMERICAL EXAMPLE

The numerical example used to analyse the performance of the
marginalised PF is as follows. An object with an initial range of
5 km and bearing 10◦ moves at a constant speed of 4 knots with a
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Algorithm 1: Marginalised particle filter for BOT

1 for i = 1, . . . , n do set ξik(0) = ξik−1 and θik(0) = θik−1;
2 for j = 1, . . . ,m− 1 do
3 for i = 1, . . . , n do
4 compute βik(j) = βik(j − 1) + T β̇ik(j − 1)/m;
5 compute hik(j) = h(ζik(j − 1)) and

sik(j) = sk(β̃
i
k(j − 1); (j − 1)T/m) ;

6 draw ζik(j) ∼ f(· − hik(j); s
i
k(j),P,θ

i
k(j − 1));

7 compute θik(j) = θ̃
i

k(ζ
i
k(j));

8 end
9 end

10 for i = 1, . . . , n do
11 set β̃ik = βik(m− 1) + T β̇ik(m− 1)/m;
12 compute ψ̃i = N(φk; β̃

i
k, κ)

13 end
14 for i = 1, . . . , n do compute ψi = ψ̃/

∑n
j=1 ψ̃

j ;
15 for i = 1, . . . , n do
16 set a = j with probability ψj ;
17 compute hik = h(ζak(m− 1)) and

sik = sk(β
a
k(m− 1); (m− 1)T/m);

18 draw ζik ∼ f(· − hik; s
i
k,P,θ

a
k(m− 1));

19 set βik = β̃ak ;
20 compute θik(j) = θ̃

a

k(ζ
i
k);

21 end

heading -130◦. The object is observed by a sensor which produces
measurements every T = 60 seconds. The sensor moves at a con-
stant speed of 5 knots with initial heading -45◦. Between the 13th
and 17th sampling instants the sensor executes a turn at a constant
rate of 0.5◦/s. The sensor then continues along the new heading
until the surveillance period ends after 30 sampling periods. The
measurement noise standard deviation is set to 1◦. This example,
which has previously been used in [12, 16], is illustrated in Fig. 1.
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Fig. 1. Simulation scenario: The sensor trajectory is indicated by
the blue dots and the object trajectory is indicated by the red crosses.
Circles are placed at the trajectory starting points.

The proposed algorithm, referred to as the marginalised PF in
MPC (MPF-MPC), is compared to several existing PFs. A bootstrap
filter (BF), as proposed in [10], is considered in both Cartesian co-
ordinates and MPC. These filters are referred to as the BF-C and

BF-MPC, respectively. The BF-MPC is implemented with the exact
dynamical equation (7) rather than the Euler approximation. We also
consider the marginalised PF in Cartesian coordinates, referred to as
the MPF-C, as proposed in [8]. The MPF-MPC employs the Euler
approximation over m = 4 intervals per sampling period. Although
no process noise exists in the object motion, the filters assume a
small amount of process noise. In particular, the process noise co-
variance matrix is as shown in (6) with q = 10−8.

The filters are initialised with the aid of the first measurement,
as described in [16]. The initial bearing and heading are determined
from the measurement. The initial bearing is from the distribution
N(φ1, κ). It is assumed the object is headed toward the sensor, al-
though with a large degree of uncertainty, so that the initial heading
is distributed as N(φ1 + π, (45π/180)2). Prior information on the
object range and speed is assumed to be available so that the ini-
tial range, in km, is distributed as N(10, 9) and the initial speed, in
knots, has the distribution N(16, 36). The considerable amount of
uncertainty in the prior, coupled with the initial non-observability of
the range, make this a difficult filtering problem.

The filters are implemented with sample sizes between n = 103

and n = 105. For each sample size, the RMS position error is com-
puted by averaging over 1000 realisations. The RMS position errors
averaged over the last 10 sampling instants of the surveillance period
are plotted against sample size in Fig. 2. The best performance is
clearly achieved by the MPF-MPC. It obtains the same accuracy as
BF-C, BF-MPC and MPF-C, which perform similarly, with less than
1/10 the sample size. The similarity in the performances of the BF-
C and MPF-C is in accordance with results given in [8]. The saving
in sample size achieved by the MPF-MPC is offset somewhat by a
greater computational expense per particle: roughly four times that
of the BF-MPC and seven times that of the BF-C and MPF-C in our
implementation.

10
3

10
4

10
5

0

0.5

1

1.5

2

2.5

3

3.5

4

Sample size

T
im

e
−

a
v
e

ra
g

e
d

 R
M

S
 p

o
s
it
io

n
 e

rr
o

r 
(k

m
)

 

 

BF−C
BF−MPC

MPF−C
MPF−MPC

Fig. 2. Time-averaged RMS position error plotted against sample
size for the BF-C, BF-MPC, MPF-C and MPF-MPC.

5. CONCLUSIONS

A marginalised particle filter for bearings-only tracking has been de-
veloped. The proposed filter exploits the structure of the Euler ap-
proximation to the dynamical equation of the state in modified polar
coordinates. Significant improvement over existing particle filters
was obtained in a numerical example.

Future work includes an exploration of how the accuracy of the
Euler approximation affects performance and the extension to track-
ing in three dimensions.
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